We describe the synthesis of a trifunctional scaffold constructed from a planar core of trimesic acid derivatized with three propargylamine moieties. The scaffold was attached to a solid‐phase resin through the carboxylic group of a fluorinated alkyl spacer arm. The orthogonal protection of two of the alkyne groups with triethylsilyl and triisopropylsilyl moieties enabled modular and efficient derivatization of the scaffold with three different azides by using solid‐phase synthesis on amphiphilic ChemMatrix resin. We showed that a fluorine label can be used to quantify the content of fluorine‐containing compounds by 19F NMR spectroscopic analysis after cleavage from the resin. We have thus designed a versatile and convenient tool that could be useful for simple and rapid solid‐phase syntheses of combinatorial libraries of the scaffold‐based compounds, for example as new protein binders.
Human insulin-like growth factor 1 (IGF-1) is a 70 amino acid protein hormone, with key impact on growth, development, and lifespan. The physiological and clinical importance of IGF-1 prompted challenging chemical and biological trials toward the development of its analogs as molecular tools for the IGF-1 receptor (IGF1-R) studies and as new therapeutics. Here, we report a new method for the total chemical synthesis of IGF-1 analogs, which entails the solid-phase synthesis of two IGF-1 precursor chains that is followed by the Cu-catalyzed azide-alkyne cycloaddition ligation and by biomimetic formation of a native pattern of disulfides. The connection of the two IGF-1 precursor chains by the triazole-containing moieties, and variation of its neighboring sequences (Arg36 and Arg37), was tolerated in IGF-1R binding and its activation. These new synthetic IGF-1 analogs are unique examples of disulfide bonds' rich proteins with intra main-chain triazole links. The methodology reported here also presents a convenient synthetic platform for the design and production of new analogs of this important human hormone with non-standard protein modifications.
Reactivators of acetylcholinesterase (AChE; EC 3.1.1.7) are able to treat intoxication by organophosphorus compounds, especially with pesticides or nerve agents. Owing to the fact that there exists no universal "broad-spectrum" reactivator of organophosphates-inhibited AChE, many laboratories have synthesized new AChE reactivators. Here, we synthesized five new and three previously known quaternary monopyridinium oximes as potential reactivators of AChE inhibited by nerve agents. Potencies to cleave p-nitrophenyl acetate (PNPA), which is commonly used as a model substrate of nerve agents, were measured. Their cleaving potencies were compared with 4-PAM (4-hydroxyiminomethyl-1-methylpyridinium iodide), which is derived from the structure of the currently used AChE-reactivator 2-PAM (2-hydroxyiminomethyl-1-methylpyridinium iodide). Three newly synthesized oximes achieved similar nucleophilicity at the similar pKa according to 4-PAM, which is very promising for using these derivatives as AChE reactivators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.