Intraspecific phylogeographical patterns largely depend on the life history traits of a species. Especially species with a high degree of cold tolerance, limited requirements towards habitat preferences, and relatively low active dispersal capacities may have responded in a different way to the Pleistocene climatological fluctuations than the majority of taxa studied so far. To evaluate this possibility, we studied Arion fuscus (Muller, 1774), a common and widespread European terrestrial slug, from 88 locations (N = 964). Sequence variation was assessed for fragments of the mitochondrial 16S rDNA and COI genes by means of single-strand conformation polymorphisms (SSCP) and subsequent DNA sequencing. Additionally, eight allozyme loci were scored in 843 individuals. Phylogenetic analysis revealed the presence of two major evolutionary lineages, one in the Balkan region and another in the Alps and the rest of Europe. The sequence divergence between the two lineages was limited (3.3%), but gene flow between the regions was absent, suggesting that the two regions have been isolated since the late Pliocene or early Pleistocene. Allozyme differentiation among geographical regions and mitochondrial DNA (mtDNA) lineages was low. The geographical patterns observed in our data showed that (i) haplotype and nucleotide diversities are very low in northern Europe, suggesting that single haplotypes rapidly colonized large areas; (ii) recently expanded haplotype clades have restricted distribution ranges, suggesting that current gene flow is low; and (iii) genetic diversity in the Alps is much higher than in other regions and estimated past gene flow from the Eastern Alps to other regions was high, suggesting that this was a refugial zone during the Pleistocene. This full-range phylogeography suggests the existence of an alternative refugial zone, situated north of the refugial areas currently recognized in most other taxa.
The importance and abundance of cryptic species among invertebrate taxa is well documented. Nowadays, taxonomic, phylogenetic and conservation biological studies frequently use molecular markers to delineate cryptic taxa. Such studies, however, often face the problem of the differential resolution of the molecular markers and techniques involved. This issue is explored in the present study of cryptic taxa within the terrestrial slug complex Arion subfuscus/fuscus in continental north-west Europe. To this end, morphological, allozyme and mitochondrial 16S rDNA sequence data have been jointly evaluated. Using allozyme data and gonad type, two distinct groups were consistently delineated, even under sympatric conditions. The 16S rDNA data strongly supported both those groups and even suggested the presence of three distinct taxa within one of them. However, in view of: (1) the allopatric distribution of three OTUs, (2) the lack of allozyme or morphological differentiation, and (3) the extremely high degree of intraspecific mtDNA variation reported in pulmonate gastropods, they are, for the time being, not regarded as valid species under the biological species concept. By means of 16S rDNA and allozyme data, the position of type and topotype material of A. subfuscus s.s. and A. fuscus relative to the newly defined OTUs was determined, thus clarifying the nomenclature of this species complex. Additionally, gonad type proved to be a useful character for distinguishing the two species in north-west Europe.
Extremely high levels of intraspecific mtDNA differences in pulmonate gastropods have been reported repeatedly and several hypotheses to explain them have been postulated. We studied the phylogeny and phylogeography of 51 populations (n = 843) of the highly polymorphic terrestrial slug Arion subfuscus (Draparnaud, 1805) across its native distribution range in Western Europe. By combining the analysis of single stranded conformation polymorphisms (SSCP) and nucleotide sequencing, we obtained individual sequence data for a fragment of the mitochondrial 16S rDNA and a fragment of the nuclear ITS1. Additionally, five polymorphic allozyme loci were scored. Based on the 16S rDNA phylogeny, five monophyletic haplotype groups with sequence divergences of 9–21% were found. Despite this deep mitochondrial divergence, the haplotype groups were not monophyletic for the nuclear ITS1 fragment and haplotype group‐specific allozyme alleles were not found. Although there is evidence for an accelerated mtDNA clock, the divergence among the haplotype groups is older than the Pleistocene and their current allopatric ranges probably reflect allopatric divergence and glacial survival in separate refugia from which different post‐glacial colonization routes were established. A range‐overlap of two mtDNA groups (S1 and S2, 21% sequence divergence) stretched from Central France and Belgium up to the North of the British Isles. The nuclear data suggest that this secondary contact resulted in hybridization between the allopatrically diverged groups. Therefore, it seems that, at least for two of the groups, the deep mtDNA divergence was only partially accompanied by the formation of reproductive isolation.
Brown trout populations in the Belgian rivers Scheldt and Meuse have been intensively stocked in the past decades, often with material of uncertain origin. Moreover, the species' habitat has become increasingly fragmented, preventing gene flow between neighboring populations. We assessed how this impacted genetic diversity and population structure by analyzing 12 wild populations (total n ¼ 309) and seven hatchery stocks (n ¼ 200) at the mitochondrial control region with SSCP and at 27 RAPD loci. Historical records indicate that brown trout from distant locations have been used to supplement hatchery stocks; nevertheless we detected non-Atlantic mitochondrial genomes in only one population of the Scheldt basin and in one hatchery. In general, the hatchery samples displayed a higher genetic diversity and differentiated less among each other (global F ST(mtDNA) ¼ 0.311/F ST(RAPD) ¼ 0.029) compared to the wild populations (global F ST(mtDNA) ¼ 0.477/F ST(RAPD) ¼ 0.204). This is due to frequent exchanges between hatcheries and regular supplementation from several indigenous populations. Gene pools present in most downstream sections from tributaries of the Meuse were similar to each other and to the hatchery samples, despite the presence of migration barriers. Assignment analyses indicated that the contribution of hatchery material to the upstream parts was limited or even completely absent in populations separated by a physical barrier. Intensive stocking and exchange between hatcheries has homogenized the downstream sections of the Meuse River, whereas the migration barriers preserved the indigenous upstream populations. As such, uncontrolled removal of barriers might result in an irreversible loss of the remnant indigenous gene pools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.