This article extends earlier research by the authors that was devoted to the experimental evaluation of ultra-fine particles produced by the laboratory combustion of beechwood samples. These particles can have severe influence on human health. The current paper presents a parametrical study carried out to assess the influence of the composition of the atmosphere and the temperature on the production of ultra-fine particles during the micro-scale combustion process. The paper presents a laboratory procedure that incorporate the thermogravimetric analysis (TGA) and detailed monitoring of the size distribution of the produced fine particles. The study utilises the laboratory scale identification of the formation and growth of the fine particles during the temperature increase of beech wood samples. It also compares the particle emissions produced by beech heartwood and beech bark. The size of the emitted particles is very strongly influenced by the concentration of light volatiles released from the heated wood sample. From the experimental study, decreasing oxygen content in the atmosphere generally results in higher particulate matter (PM) production.
Abstract. Fine particles generated from laboratory biomass combustion are discussed in this study. The approach combines the thermogravimetric analysis during thermal decomposition of beech wood sample with detailed monitoring of the size distribution of fine particles produced. Thermogravimetric analysis (TGA) allows monitoring the exact temperature influence of a small fuel sample (wood) according to the desired schedule. The cool aerosol stream leaving TGA enters a Scanning Mobility Particle Sizer (SMPS) where the particle size fractions are separated. The monodisperse aerosol is counted by the condensation particle counter (CPC). The parametrical study was carried out to assess the influence of composition, size and surface of the wood sample on the production and size distribution of ultrafine particles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.