In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W m Ϫ2 in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (Ϯ10 W m Ϫ2). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of
The Rhône-Aggregation (Rhône-AGG) Land Surface Scheme (LSS) intercomparison project is an initiative within the Global Energy and Water Cycle Experiment (GEWEX)/Global Land-Atmosphere System Study (GLASS) panel of the World Climate Research Programme (WCRP). It is a intermediate step leading up to the next phase of the Global Soil Wetness Project (GSWP) (Phase 2), for which there will be a broader investigation of the aggregation between global scales (GSWP-1) and the river scale. This project makes use of the Rhône modeling system, which was developed in recent years by the French research community in order to study the continental water cycle on a regional scale. The main goals of this study are to investigate how 15 LSSs simulate the water balance for several annual cycles compared to data from a dense observation network consisting of daily discharge from over 145 gauges and daily snow depth from 24 sites, and to examine the impact of changing the spatial scale on the simulations. The overall evapotranspiration, runoff, and monthly change in water storage are similarly simulated by the LSSs, however, the differing partitioning among the fluxes results in very different river discharges and soil moisture equilibrium states. Subgrid runoff is especially important for discharge at the daily timescale and for smallerscale basins. Also, models using an explicit treatment of the snowpack compared better with the observations than simpler composite schemes. Results from a series of scaling experiments are examined for which the spatial resolution of the computational grid is decreased to be consistent with large-scale atmospheric models. The impact of upscaling on the domainaveraged hydrological components is similar among most LSSs, with increased evaporation of water intercepted by the canopy and a decrease in surface runoff representing the most consistent inter-LSS responses. A significant finding is that the snow water equivalent is greatly reduced by upscaling in all LSSs but one that explicitly accounts for subgrid-scale orography effects on the atmospheric forcing.
A multimodel comparison of the performance of land surface parameterization schemes increases understanding of the land-atmosphere feedback mechanisms over West Africa.
[1] The work presented here describes a new modeling infrastructure of irrigation which is integrated in a land surface model and which will make this model a suitable tool for studies of interactions between irrigation water use and climate change. The model is presented and validated off-line over the Indian Peninsula. Numerical experiments are conducted with a 1 degree spatial resolution land surface model. Two 2-year simulations, forced by the ISLSCP (1987 -88) data sets, are conducted with and without irrigation. The analysis focuses on irrigation modeling validation and briefly presents first results on irrigation's impact on the surface fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.