Abstract-Detection and tracking of people in visible-light images has been subject to extensive research in the past decades with applications ranging from surveillance to searchand-rescue. Following the growing availability of thermal cameras and the distinctive thermal signature of humans, research effort has been focusing on developing people detection and tracking methodologies applicable to this sensing modality. However, a plethora of challenges arise on the transition from visible-light to thermal images, especially with the recent trend of employing thermal cameras onboard aerial platforms (e.g. in search-and-rescue research) capturing oblique views of the scenery. This paper presents a new, publicly available dataset of annotated thermal image sequences, posing a multitude of challenges for people detection and tracking. Moreover, we propose a new particle filter based framework for tracking people in aerial thermal images. Finally, we evaluate the performance of this pipeline on our dataset, incorporating a selection of relevant, state-of-the-art methods and present a comprehensive discussion of the merits spawning from our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.