Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.
Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontologyevaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.
With the emergence of tools for collaborative ontology engineering, more and more data about the creation process behind collaborative construction of ontologies is becoming available. Today, collaborative ontology engineering tools such as Collaborative Protégé offer rich and structured logs of changes, thereby opening up new challenges and opportunities to study and analyze the creation of collaboratively constructed ontologies. While there exists a plethora of visualization tools for ontologies, they have primarily been built to visualize aspects of the final product (the ontology) and not the collaborative processes behind construction (e.g. the changes made by contributors over time). To the best of our knowledge, there exists no ontology visualization tool today that focuses primarily on visualizing the history behind collaboratively constructed ontologies. Since the ontology engineering processes can influence the quality of the final ontology, we believe that visualizing process data represents an important stepping-stone towards better understanding of managing the collaborative construction of ontologies in the future. In this application paper, we present a tool – PragmatiX – which taps into structured change logs provided by tools such as Collaborative Protégé to visualize various pragmatic aspects of collaborative ontology engineering. The tool is aimed at managers and leaders of collaborative ontology engineering projects to help them in monitoring progress, in exploring issues and problems, and in tracking quality-related issues such as overrides and coordination among contributors. The paper makes the following contributions: (i) we present PragmatiX, a tool for visualizing the creation process behind collaboratively constructed ontologies (ii) we illustrate the functionality and generality of the tool by applying it to structured logs of changes of two large collaborative ontology-engineering projects and (iii) we conduct a heuristic evaluation of the tool with domain experts to uncover early design challenges and opportunities for improvement. Finally, we hope that this work sparks a new line of research on visualization tools for collaborative ontology engineering projects.
Twitter messages often contain so-called hashtags to denote keywords related to them. Using a dataset of 29 million messages, I explore relations among these hashtags with respect to co-occurrences. Furthermore, I present an attempt to classify hashtags into five intuitive classes, using a machine-learning approach. The overall outcome is an interactive Web application to explore Twitter hashtags.
This paper describes the initial phase of a study of ecolinguisticbased social media analytics aimed at understanding the frequency, semantics, context and potential persuasive influence of social media conversations about energy issues, metaphors, frames and behaviors. Our broad research question asked, "How does the online conversation about energy efficiency behavior change overtime?" We operationalized conversations to be overtime mentions of ecolinguistic terms in Twitter. We conducted a preliminary analysis of the messages, users and content hashtags in tweets over 4 months. Illustrative results demonstrate new tools for data acquisition, curation and analysis. They demonstrate an initial concept proof of the tweetonomy construct and provide preliminary network analysis of energy terms in twitter streams. Results indicate opportunities for using time series analysis to understand the rhythm of the social conversation to provide insights about when people are reachable for persuasive communications . They indicate opportunities for text analysis on Twitter content to understand how to improve relevance of energy efficiency communications. They demonstrate user-friendly tools to visualize the semantics of * This research was funded in part by the Department of Energy (DOE), through an ARPA-e research cooperative agreement to Stanford University, Byron Reeves principal investigator, focused on human behavior change via feedback from an array of energy monitoring sensors (both high and low resolution sensors) on online coverage of targeted behavioral descriptions, technologies, and polices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.