The functions of, and interactions between, the innate and adaptive immune systems are vital for anticancer immunity. Cytotoxic T cells expressing cell-surface CD8 are the most powerful effectors in the anticancer immune response and form the backbone of current successful cancer immunotherapies. Immune-checkpoint inhibitors are designed to target immune-inhibitory receptors that function to regulate the immune response, whereas adoptive cell-transfer therapies use CD8+ T cells with genetically modified receptors—chimaeric antigen receptors—to specify and enhance CD8+ T-cell functionality. New generations of cytotoxic T cells with genetically modified or synthetic receptors are being developed and evaluated in clinical trials. Furthermore, combinatory regimens might optimise treatment effects and reduce adverse events. This review summarises advances in research on the most prominent immune effectors in cancer and cancer immunotherapy, cytotoxic T cells, and discusses possible implications for future cancer treatment.
Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.
The cellular dynamics of the immune system are complex and difficult to measure. Access to this problematic area has been greatly enhanced by the recent development of tetrameric complexes of MHC class I glycoprotein + peptide (tetramers) for the direct staining of freshly isolated, antigen-specific CD8(+ )T cells. Analysis to date with both naturally acquired and experimentally induced infections has established that the numbers of virus-specific CD8(+) T cells present during both the acute and memory phases of the host response are more than tenfold in excess of previously suspected values. The levels are such that the virus-specific CD8(+) set is readily detected in the human peripheral blood lymphocyte compartment, particularly during persistent infections. Experimentally, it is now possible to measure the extent of cycling for tetramer (+)CD8(+) T cells during the acute and memory phases of the host response to viruses. Dissection of the phenotypic, functional, and molecular diversity of CD8(+) T cell populations has been greatly facilitated. It is hoped it will also soon be possible to analyze CD4(+) T cell populations in this way. Though these are early days and there is an enormous amount to be done, our perceptions of the shape of virus-specific cell-mediated immunity are changing rapidly.
IFN-γ-inducible protein 10/CXCL10 is a chemokine associated with type 1 T cell responses, regulating the migration of activated T cells through binding to the CXCR3 receptor. Expression of both CXCL10 and CXCR3 are observed during immunopathological diseases of the CNS, and this receptor/ligand pair is thought to play a central role in regulating T cell-mediated inflammation in this organ site. In this report, we investigated the role of CXCL10 in regulating CD8+ T cell-mediated inflammation in the virus-infected brain. This was done through analysis of CXCL10-deficient mice infected intracerebrally with lymphocytic choriomeningitis virus, which in normal immunocompetent mice induces a fatal CD8+ T cell-mediated meningoencephalitis. We found that a normal antiviral CD8+ T cell response was generated in CXCL10-deficient mice, and that lack of CXCL10 had no influence on the accumulation of mononuclear cells in the cerebrospinal fluid. However, analysis of the susceptibility of CXCL10-deficient mice to lymphocytic choriomeningitis virus-induced meningitis revealed that these mice just like CXCR3-deficient mice were partially resistant to this disease, whereas wild-type mice invariably died. Furthermore, despite marked up-regulation of the two remaining CXCR3 ligands: CXCL9 and 11, we found a reduced accumulation of CD8+ T cells in the brain parenchyma around the time point when wild-type mice succumb as a result of CD8+ T cell-mediated inflammation. Thus, taken together these results indicate a central role for CXCL10 in regulating the accumulation of effector T cells at sites of CNS inflammation, with no apparent compensatory effect of other CXCR3 ligands.
The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most potent and versatile Ag delivery vehicles available. However, the impact of chronic infections like HIV and hepatitis C virus underscore the need for further improvements. In this study, we show that the protective immune response to an adenovirus-encoded vaccine Ag can be accelerated, enhanced, broadened, and prolonged by tethering of the rAg to the MHC class II-associated invariant chain (Ii). Thus, adenovirus-vectored vaccines expressing lymphocytic choriomeningitis virus (LCMV)-derived glycoprotein linked to Ii increased the CD4+ and CD8+ T cell stimulatory capacity in vitro and in vivo. Furthermore, mice vaccinated with a single dose of adenovirus-expressing LCMV-derived glycoprotein linked to Ii were protected against lethal virus-induced choriomeningitis, lethal challenge with strains mutated in immunodominant T cell epitopes, and systemic infection with a highly invasive strain. In therapeutic tumor vaccination, the vaccine was as efficient as live LCMV. In comparison, animals vaccinated with a conventional adenovirus vaccine expressing unmodified glycoprotein were protected against systemic infection, but only temporarily against lethal choriomeningitis, and this vaccine was less efficient in tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.