Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-19 1,2 . A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-19 3 . Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.The COVID-19 pandemic has prompted substantial efforts to develop effective countermeasures against SARS-CoV-2. Preclinical data and phase-III clinical studies indicate that monoclonal antibodies could be effectively deployed for prevention or treatment during the viral symptoms phase of the disease 1,2 . Cocktails of two or more monoclonal antibodies are preferred over a single antibody as these cocktails result in increased efficacy and the prevention of viral escape. However, this approach requires increased manufacturing costs and volumes, which are problematic at a time when the supply chain is under pressure to meet the high demand for COVID-19 therapeutic agents, vaccines and biologics in general 4 . Cocktails also complicate formulation 5,6 and hinder strategies such as antibody delivery by viral vectors or by nonvectored nucleic acids 7,8 . One alternative is to use multispecific antibodies, which have the advantages of cocktails and single-molecule strategies.To this end, we used structural information 9 and computational simulations to design bispecific antibodies that would simultaneously bind to (i) independent sites on the same RBD and (ii) distinct RBDs on a spike (S) trimer. We evaluated several designs using atomistic molecular dynamics simulations, and produced four constructs: of these, CoV-X2 was the most potent neutralizer of SARS-CoV-2 pseudovirus, and had a half-maximal inhibitory concentration (IC 50 ) of 0.04 nM (5.8 ng ml −1 ) (Extended Data Fig. 1). CoV-X2 is a human-derived IgG1-like bispecific antibody in the CrossMAb format 10 that is the result of the combination of the Fragment antigen binding (Fab) of the monoclonal antibodies C121 and C135, which are two potent neutralizers of SARS-CoV-2 3 . Structural predictions showed that CoV-X2-but not its parental monoclonal antibodies-can bind bivalently to all RBD conformations on the S trimer, which prevents the binding of ACE2 receptor 11 (Fig. 1a, Extended Data Fig. 2).CoV-X2 bou...
A fundamental question in development is how cells assemble to form a tubular network during organ formation. In glandular organs tubulogenesis is a multistep process requiring coordinated proliferation, polarization and reorganization of epithelial cells to from a lumen, and lumen expansion. Although it is clear that epithelial cells possess an intrinsic ability to organize into polarized structures, the mechanisms coordinating morphogenetic processes during tubulogenesis are poorly understood. Here, we demonstrate that parasympathetic nerves regulate ductal tubulogenesis in the developing salivary gland. We show that the neurotransmitter vasoactive intestinal peptide (VIP) secreted by the innervating ganglia promotes ductal growth, leads to the formation of a contiguous lumen, and facilitates lumen expansion through a cAMP/PKA-dependent pathway. Furthermore, we provide evidence that lumen expansion is independent of apoptosis and involves the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl(−) channel. Thus, parasympathetic innervation coordinates multiple steps in tubulogenesis during organ formation.
It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago. rudiment | signaling center | tooth evolution | SHH | molar development
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.