SUMMARYAccording to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.
According to Bergmann's rule, individuals of a given species tend to be larger in colder (northern) climates. Traditional explanation points to the relatively lower surface-to-volume ratio in larger animals and, consequently, relatively lower costs of thermoregulation. We examined intraspecific covariation of body size with geographical location and climate in five species of Sorex shrews, animals that are among the smallest extant mammals. The condylobasal length of skull (CBL), compiled from literature data and measured on museum specimens, was used as an indicator of the overall body size of shrews. Surprisingly, in three out of five shrew species, the CBL was negatively correlated with latitude, and the same trend, although not statistically significant, was found in the fourth species. In general, shrews were smaller in colder areas, as evidenced by the positive correlations between the CBL and temperature. In two species, these positive correlations appeared when the effect of longitude was held constant in the partial correlation analysis. Characteristically, the strongest negative correlation with latitude and positive with temperatures was found in S. minutus , the smallest species under study. Shrews were in general larger in environments with high actual evapotranspiration. Body mass reviewed in S. araneus paralleled the pattern found in the CBL variation in this species, i.e. it decreased northward, both in summer-and winter-caught animals. In addition, contrary to the widely acceptedbut not rigorously testedbelief, body mass recession from summer to winter (the Dehnel Effect) did not correlate with latitude. We concluded that shrews followed the converse to Bergmann's rule, and hypothesize that part of their body size variation along the west-east axis may be explained by character displacement. We also hypothesize that scarcity of food, especially in winter, is a major factor selecting for small body size in shrews in northern areas, as smaller individuals should require less food.
Young shrews of the genus Sorex that are born in early summer reduce their body size before wintering, including a reduction of brain weight of 10-30%. In the spring they mature sexually, double their body weight and regain about half of the loss in brain weight. To investigate the mechanisms of brain weight oscillations we studied the rate of cell death and generation in the brain during the whole life cycle of the common shrew (Sorex araneus) and pygmy shrew (S. minutus). After weaning, shrews generate new brain cells in only two mammalian neurogenic zones and approximately 80% of these develop into neurones. The increase of the shrew brain weight in the spring did not depend on recruitment of new cells. Moreover, adult Sorex shrews did not generate new cells in the dentate gyri. Injections of 5-HT1A receptor agonists in the adult shrews induced neurogenesis in their dentate gyri, showing the presence of dormant progenitor cells. Generation of new neurones in the subventricular zone of the lateral ventricles and their recruitment to olfactory bulbs continued throughout life. TUNEL labelling showed that the rate of cell death in all brain structures, including the proliferation zones and olfactory bulb, was very low throughout life. We conclude that neither cell death nor recruitment significantly contributes to seasonal oscillations and the net loss of brain weight in the Sorex shrews. With the exception of dentate gyrus and olfactory bulb, cellular populations of brain structures are stable throughout the life cycle of these shrews.
Five forested wetland sites in western Kentucky with hydrologic regimes varying from seasonally to continuously flooded were investigated for net above-ground biomass productivity (litterfall plus biomass growth) and for possible indicators of that productivity, including abiotic (flooding frequency and depth, phosphorus concentrations in water and sediments) and biotic (biomass, tree density, basal area, structural complexity, and mean height) indices. Net biomass productivity ranged from 205 g m-Zy -1 for a stagnant semipermanently flooded Taxodium swamp to 1,334 g m-Zy -1 in a bottomland forest along the Ohio River. Productivity was highest in wetlands with pulsing hydroperiods, intermediate with slowly flowing systems, and lowest with stagnant conditions. Surface water flooding of the wetlands during the growing season ranged from 17 to 100 percent of the year and did not predict productivity. Phosphorus concentrations in water and in sediments were not correlated to one another and did not, by themselves, predict productivity. No single abiotic variable predicted the exact ranking of productivity of the sites. Of the biotic variables, average tree diameter was inversely related to productivity.
It is widely assumed that winter is a critical time for homeotherms because of decreased ambient temperatures coupled with reduced food supply. Shrews are excellent models for investigating overwintering strategies, not only because of their particularly small size, high energy requirements relative to their size and short fasting endurance, but also the dramatic reduction in body size (Dehnel's phenomenon) exhibited by soricine shrews in northern temperate winters. The cause of Dehnel's phenomenon is poorly understood but food supply is implicated. To test the hypothesis that winter at higher latitudes is a period of food shortage for small homeotherms, we compared feeding habits of common shrews, Sorex araneus, and abundance and biomass of their prey in winters and summers in northeastern Poland using scat analysis combined with pitfall and ground core sampling for invertebrates. Ground‐surface activity and numbers of invertebrates in pitfall traps were greatly reduced in winter but, contrary to prediction, no significant differences between winter and summer were found in total numbers and biomass of prey invertebrates in ground core samples. However, certain prey types changed seasonally with respect to numbers, biomass and distribution in the soil profile, which was reflected in shrews’ food composition and foraging behaviour. Dehnel's phenomenon appears not to be caused by reduction in total prey numbers and biomass, at least in our study area. Smaller body mass coupled with lowering of absolute food requirements may have important survival value in winter with its reduced numbers of certain major prey coupled with increased difficulty of locating and extracting invertebrates within the soil profile resulting in higher energetic costs of foraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.