A combined experimental and numerical study is conducted to investigate temperature nonhomogeneities within a Spark Plasma Sintering tooling setup. Radial thermal gradients through a powder compact are encountered, a cause of microstructural nonuniformities in sintered specimens, which tend to become more significant when increasing the setup's characteristic size. In the insulating silicon nitride powder compact employed for the experimental procedures, a double pyrometer arrangement detects a strong temperature disparity between the overheated die and the area adjacent to the tooling's axis. A previous finite‐element simulations campaign had individuated a possible solution in a novel punch design, consisting in the drilling of three concentric ring‐shaped holes according to a specific geometrical pattern, whose efficacy is here experimentally verified. Further punch optimization strategies are drawn, involving a refinement of the three‐rings geometry by linearly varying the drilled holes characteristic dimensions along the radial direction, or the selective coating and consequent insulation of the punch cross section with a thin layer of hexagonal boron nitride. Ideal configurations are identified, consisting in a concentration of the graphite punch's mass at its center by means of a tailored holes pattern, or in the coating of a portion of the conventionally shaped punch with boron nitride.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain‐boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.