Purpose Interim positron emission tomography (PET) using the tracer, [F]fluorodeoxyglucose, may predict outcomes in patients with aggressive non-Hodgkin lymphomas. We assessed whether PET can guide therapy in patients who are treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP). Patients and Methods Newly diagnosed patients received two cycles of CHOP-plus rituximab (R-CHOP) in CD20-positive lymphomas-followed by a PET scan that was evaluated using the ΔSUV method. PET-positive patients were randomly assigned to receive six additional cycles of R-CHOP or six blocks of an intensive Burkitt's lymphoma protocol. PET-negative patients with CD20-positive lymphomas were randomly assigned or allocated to receive four additional cycles of R-CHOP or the same treatment with two additional doses rituximab. The primary end point was event-free survival time as assessed by log-rank test. Results Interim PET was positive in 108 (12.5%) and negative in 754 (87.5%) of 862 patients treated, with statistically significant differences in event-free survival and overall survival. Among PET-positive patients, 52 were randomly assigned to R-CHOP and 56 to the Burkitt protocol, with 2-year event-free survival rates of 42.0% (95% CI, 28.2% to 55.2%) and 31.6% (95% CI, 19.3% to 44.6%), respectively (hazard ratio, 1.501 [95% CI, 0.896 to 2.514]; P = .1229). The Burkitt protocol produced significantly more toxicity. Of 754 PET-negative patients, 255 underwent random assignment (129 to R-CHOP and 126 to R-CHOP with additional rituximab). Event-free survival rates were 76.4% (95% CI, 68.0% to 82.8%) and 73.5% (95% CI, 64.8% to 80.4%), respectively (hazard ratio, 1.048 [95% CI, 0.684 to 1.606]; P = .8305). Outcome prediction by PET was independent of the International Prognostic Index. Results in diffuse large B-cell lymphoma were similar to those in the total group. Conclusion Interim PET predicted survival in patients with aggressive lymphomas treated with R-CHOP. PET-based treatment intensification did not improve outcome.
Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC–regulated gene expression. In AR-SV–driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. Significance: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies. See related commentary by Rasool et al., p. 1011. This article is highlighted in the In This Issue feature, p. 995
Serra received grants from Fundacion Cientifica AECC (LABAE16020PORTT) and an ERAPERMED2019-215. J. Mateo gratefully acknowledges funding from the European Union's Horizon 2020 research and innovation program (Marie Skłodowska-Curie grant 837900), Instituto de Salud Carlos III (Grant PI18/01384), Fundación AECC, CRIS Cancer Foundation and the US Department of Defense CDMRP (Impact Award PC170510P1). S. Arce-Gallego Research.
Cold agglutinin disease (CAD) is a complement-dependent disorder, with extravascular and intravascular hemolysis resulting from initial or terminal complement activation, respectively. We tested the efficacy and safety of eculizumab, an inhibitor of the terminal complement pathway. Treatment-requiring patients received 600 mg eculizumab weekly for 4 weeks, followed 1 week later by 900 mg every other week through week 26. The primary end point was the difference in the lactate dehydrogenase level between the first and the last day of therapy. Twelve patients with chronic CAD and 1 patient with an acute cold agglutinin syndrome were included. The median lactate dehydrogenase level decreased from 572 U/L (interquartile range [IQR], 534-685) to 334 U/L (IQR, 243-567; P = .0215), paralleled by an increase in hemoglobin from 9.35 g/dL (IQR, 8.80-10.80) to 10.15 g/dL (IQR, 9.00-11.35; P = .0391; Wilcoxon signed-rank test). Three patients maintained and 8 patients acquired transfusion independence, and 1 patient each showed a reduced or increased transfusion requirement, respectively (P = .0215; exact McNemar’s test). Patients with cold agglutinins with a thermal amplitude of 37°C tended to have less pronounced lactate dehydrogenase responses than patients with cold agglutinins with narrower thermal amplitudes. In the latter, responses were observed at lower serum levels of eculizumab than they were in the former. In contrast to hemolysis, cold-induced circulatory symptoms remained unaffected. In conclusion, eculizumab significantly reduced hemolysis and transfusion requirement in patients with CAD. Suppression of hemolysis caused by cold agglutinins with a wide thermal amplitude may require higher eculizumab doses than used here. The trial is registered with EudraCT (#2009-016966-97) and www.clinicaltrials.gov (#NCT01303952).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.