The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.
Arctic observing and data systems have been widely recognized as critical infrastructures to support decision making and understanding across sectors in the Arctic and globally. Yet due to broad and persistent issues related to coordination, deployment infrastructure and technology gaps, the Arctic remains among the most poorly observed regions on the planet from the standpoint of conventional observing systems. Sustaining Arctic Observing Networks (SAON) was initiated in 2011 to address the persistent shortcomings in the coordination of Arctic observations that are maintained by its many national and organizational partners. SAON set forth a bold vision in its 2018 – 28 strategic plan to develop a roadmap for Arctic observing and data systems (ROADS) to specifically address a key gap in coordination efforts—the current lack of a systematic planning mechanism to develop and link observing and data system requirements and implementation strategies in the Arctic region. This coordination gap has hampered partnership development and investments toward improved observing and data systems. ROADS seeks to address this shortcoming through generating a systems-level view of observing requirements and implementation strategies across SAON’s many partners through its roadmap. A critical success factor for ROADS is equitable participation of Arctic Indigenous Peoples in the design and development process, starting at the process design stage to build needed equity. ROADS is both a comprehensive concept, building from a societal benefit assessment approach, and one that can proceed step-wise so that the most imperative Arctic observations—here described as shared Arctic variables (SAVs)—can be rapidly improved. SAVs will be identified through rigorous assessment at the beginning of the ROADS process, with an emphasis in that assessment on increasing shared benefit of proposed system improvements across a range of partnerships from local to global scales. The success of the ROADS process will ultimately be measured by the realization of concrete investments in and well-structured partnerships for the improved sustainment of Arctic observing and data systems in support of societal benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.