In the shandite type solid solution InxSn2–xCo3S2 the transition from half metal ferromagnetic Sn2Co3S2 to the new thermoelectric InSnCo3S2 is related to A = In, Sn on different crystallographic sites. Effects and origin of crystal and electronic structure changes induced by A = In are now investigated within the solid solution 0 ≤ x ≤ 2 including In2Co3S2. Effects are studied from X‐ray data, 119Sn Mößbauer spectroscopy, and ab initio calculations. Their origin is explored by DFT modeling on site preference of In and Sn in a supercell, electric field gradients (EFG), spin polarization, band structures, and direct space analyses (ELF, AIM). Indium is found to cause the crystal structure distortion on one A site, the electronic structure distortion to the other, as a consequence of inverted anisotropic bonding.
The crystallographic and electronic structure of shandite‐type InSnCo3S2 was reinvestigated. Single‐crystal and powder X‐ray diffraction, 119Sn Mößbauer spectroscopy, and DFT studies focused on the relation between the In–Sn ordering and a recently predicted semiconductor‐to‐metal transition. One aim of the combined experimental and theoretical approach was to show how the occupation of Sn and In sites causes structural distortions. The second aim was to point out effects on the electronic structure and the relative stability of structural variants with respect to In–Sn ordering. The interpretation of both X‐ray diffraction and Mößbauer spectroscopy data by DFT calculations helped to understand the effects from a nonlocal and a local point of view. This is a starting point of materials design for various applications.
The solid solution In 2Àx Sn x Co 3 S 2 is attractive due to a variety of interesting properties depending on the In/ Sn content, i.e. half metal ferromagnetic Sn 2 Co 3 S 2 , low dimensional metal In 2 Co 3 S 2 , and semiconducting thermoelectric InSnCo 3 S 2 . For the latter, crystal structure effects and a metal to insulator transition are not only related to electron counting but also to ordering of In and Sn within and between Co Kagomé nets. These observations have not been adequately understood to date. The degree of ordering is now evaluated from neutron diffraction data to distinguish In and Sn. The origin and effects on crystal and electronic structures are studied by DFT calculations on a superstructure model. Relations of local bonding (electron localization function ELF and Bader's AIM theory), In/Sn site preference, crystal structure distortions, and the opening of the gap are explored. Results are generalised from predictions on isoelectronic compounds.
The ternary Laves phase Cd(4)Cu(7)As is the first intermetallic compound in the system Cu-Cd-As and a representative of a new substitution variant for Laves phases. It crystallizes orthorhombically in the space group Pnnm (No. 58) with lattice parameters a = 9.8833(7) Å; b = 7.1251(3) Å; c = 5.0895(4) Å. All sites are fully occupied within the standard deviations. The structure can be described as typical Laves phase, where Cu and As are forming vertex-linked tetrahedra and Cd adopts the structure motive of a distorted diamond network. Cd(4)Cu(7)As was prepared from stoichiometric mixtures of the elements in a solid state reaction at 1000 °C. Magnetic measurements are showing a Pauli paramagnetic behavior. During our systematical investigations within the ternary phase triangle Cd-Cu-As the cubic C15-type Laves phase Cd(4)Cu(6.9(1))As(1.1(1)) was structurally characterized. It crystallizes cubic in the space group Fd3m with lattice parameter a = 7.0779(8) Å. Typically for quasi-binary Laves phases Cu and As are both occupying the 16c site. Chemical bonding, charge transfer and atomic properties of Cd(4)Cu(7)As were analyzed by band structure, ELF, and AIM calculations. On the basis of the general formula for Laves phases AB(2), Cd is slightly positively charged forming the A substructure, whereas Cu and As represent the negatively charged B substructure in both cases. The crystal structure distortion is thus related to local effects caused by Arsenic that exhibits a larger atomic volume (18 Å(3) compared to 13 Å(3) for Cu) and higher ionicity in bonding.
The half metal (HFM) Sn2Co3S2 shows a fascinating S = 1/2 magnetism. Anisotropic coupling of spins in and between Co Kagomé layers by Sn sites is now studied from the substitution effects of S by Se by systematic and local experimental and first principles data. Trends in crystal structure changes (c/a ratio) as retrieved from XRD data on the solid solution Sn2Co3S2-xSex are complemented by DFT modelling on Sn2Co3SeS and hitherto unknown Sn2Co3Se2. The relationship of crystal structure effects with changes in Curie temperatures and magnetic hysteresis is shown from susceptibility measurements. An insight into the role of the Sn sites in magnetism and bonding is gained from (119)Sn Mössbauer spectroscopic measurements. Isomer shifts, quadrupole splitting, and magnetic hyperfine fields are interpreted by DFT calculations on chemical bonding, electric field gradients (EFG), Fermi contact, and spin polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.