A consistent determinant of the establishment success of alien species appears to be the number of individuals that are introduced to found a population (propagule pressure), yet variation in the form of this relationship has been largely unexplored. Here, we present the first quantitative systematic review of this form, using Bayesian meta-analytical methods. The relationship between propagule pressure and establishment success has been evaluated for a broad range of taxa and life histories, including invertebrates, herbaceous plants and long-lived trees, and terrestrial and aquatic vertebrates. We found a positive mean effect of propagule pressure on establishment success to be a feature of every hypothesis we tested. However, establishment success most critically depended on propagule pressures in the range of 10–100 individuals. Heterogeneity in effect size was associated primarily with different analytical approaches, with some evidence of larger effect sizes in animal rather than plant introductions. Conversely, no variation was accounted for in any analysis by the scale of study (field to global) or methodology (observational, experimental, or proxy) used. Our analyses reveal remarkable consistency in the form of the relationship between propagule pressure and alien population establishment success.
The influence of the histone variant H2A.Z on transcription remains a long-standing conundrum. Here, by analyzing the actinrelated protein6 mutant, which is impaired in H2A.Z deposition, and by H2A.Z profiling in stress conditions, we investigated the impact of this histone variant on gene expression in Arabidopsis thaliana. We demonstrate that the arp6 mutant exhibits anomalies in response to osmotic stress. Indeed, stress-responsive genes are overrepresented among those hyperactive in arp6. In wild-type plants, these genes exhibit high levels of H2A.Z in the gene body. Furthermore, we observed that in droughtresponsive genes, levels of H2A.Z in the gene body correlate with transcript levels. H2A.Z occupancy, but not distribution, changes in parallel with transcriptional changes. In particular, we observed H2A.Z loss upon transcriptional activation and H2A.Z gain upon repression. These data suggest that H2A.Z has a repressive role in transcription and counteracts unwanted expression in noninductive conditions. However, reduced activity of some genes in arp6 is associated with distinct behavior of H2A.Z at their +1 nucleosome, which exemplifies the requirement of this histone for transcription. Our data support a model where H2A.Z in gene bodies has a strong repressive effect on transcription, whereas in +1 nucleosomes, it is important for maintaining the activity of some genes.
Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18.
BackgroundHistone acetyltransferase complex NuA4 and histone variant exchanging complex SWR1 are two chromatin modifying complexes which act cooperatively in yeast and share some intriguing structural similarities. Protein subunits of NuA4 and SWR1-C are highly conserved across eukaryotes, but form different multiprotein arrangements. For example, the human TIP60-p400 complex consists of homologues of both yeast NuA4 and SWR1-C subunits, combining subunits necessary for histone acetylation and histone variant exchange. It is currently not known what protein complexes are formed by the plant homologues of NuA4 and SWR1-C subunits.ResultsWe report on the identification and molecular characterization of AtEAF1, a new subunit of Arabidopsis NuA4 complex which shows many similarities to the platform protein of the yeast NuA4 complex. AtEAF1 copurifies with Arabidopsis homologues of NuA4 and SWR1-C subunits ARP4 and SWC4 and interacts physically with AtYAF9A and AtYAF9B, homologues of the YAF9 subunit. Plants carrying a T-DNA insertion in one of the genes encoding AtEAF1 showed decreased FLC expression and early flowering, similarly to Atyaf9 mutants. Chromatin immunoprecipitation analyses of the single mutant Ateaf1b-2 and artificial miRNA knock-down Ateaf1 lines showed decreased levels of H4K5 acetylation in the promoter regions of major flowering regulator genes, further supporting the role of AtEAF1 as a subunit of the plant NuA4 complex.ConclusionsGrowing evidence suggests that the molecular functions of the NuA4 and SWR1 complexes are conserved in plants and contribute significantly to plant development and physiology. Our work provides evidence for the existence of a yeast-like EAF1 platform protein in A. thaliana, filling an important gap in the knowledge about the subunit organization of the plant NuA4 complex.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0461-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.