The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders.
BackgroundHistone acetyltransferase complex NuA4 and histone variant exchanging complex SWR1 are two chromatin modifying complexes which act cooperatively in yeast and share some intriguing structural similarities. Protein subunits of NuA4 and SWR1-C are highly conserved across eukaryotes, but form different multiprotein arrangements. For example, the human TIP60-p400 complex consists of homologues of both yeast NuA4 and SWR1-C subunits, combining subunits necessary for histone acetylation and histone variant exchange. It is currently not known what protein complexes are formed by the plant homologues of NuA4 and SWR1-C subunits.ResultsWe report on the identification and molecular characterization of AtEAF1, a new subunit of Arabidopsis NuA4 complex which shows many similarities to the platform protein of the yeast NuA4 complex. AtEAF1 copurifies with Arabidopsis homologues of NuA4 and SWR1-C subunits ARP4 and SWC4 and interacts physically with AtYAF9A and AtYAF9B, homologues of the YAF9 subunit. Plants carrying a T-DNA insertion in one of the genes encoding AtEAF1 showed decreased FLC expression and early flowering, similarly to Atyaf9 mutants. Chromatin immunoprecipitation analyses of the single mutant Ateaf1b-2 and artificial miRNA knock-down Ateaf1 lines showed decreased levels of H4K5 acetylation in the promoter regions of major flowering regulator genes, further supporting the role of AtEAF1 as a subunit of the plant NuA4 complex.ConclusionsGrowing evidence suggests that the molecular functions of the NuA4 and SWR1 complexes are conserved in plants and contribute significantly to plant development and physiology. Our work provides evidence for the existence of a yeast-like EAF1 platform protein in A. thaliana, filling an important gap in the knowledge about the subunit organization of the plant NuA4 complex.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0461-1) contains supplementary material, which is available to authorized users.
Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regulated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abi1td) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abi1td mutant was compensated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evidence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.
Large differences in plant genome sizes are mainly due to numerous events of insertions or deletions (indels). The balance between these events determines the evolutionary direction of genome changes. To address the question of what phenomena trigger these alterations, we compared the genomic sequences of two Arabidopsis thaliana lines, Columbia (Col) and Landsberg erecta (Ler). Based on the resulting alignments large indels (>100 bp) within these two genomes were analysed. There are ∼8500 large indels accounting for the differences between the two genomes. The genetic basis of their origin was distinguished as three main categories: unequal recombination (Urec)-derived, illegitimate recombination (Illrec)-derived and transposable elements (TE)-derived. A detailed study of their distribution and size variation along chromosomes, together with a correlation analyses, allowed us to demonstrate the impact of particular recombination-based mechanisms on the plant genome evolution. The results show that unequal recombination is not efficient in the removal of TEs within the pericentromeric regions. Moreover, we discovered an unexpectedly high influence of large indels on gene evolution pointing out significant differences between the various gene families. For the first time, we present convincing evidence that somatic events do play an important role in plant genome evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.