Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a singledominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one cDNA for two MHC haplotypes (B14 and B15) and cDNAs corresponding to two genes for the other six (B2, B4, B6, B12, B19, and B21). Second, we find, for the B4, B12, and B15 haplotypes, that one cDNA is at least 10-fold more abundant than the other. Third, we use 2D gel electrophoresis of class I molecules from pulse-labeled cells to show that there is only one heavy chain spot for the B4 and B15 haplotypes, and one major spot for the B12 haplotype. Fourth, we determine the peptide motifs for B4, B12, and B15 cells in detail, including pool sequences and individual peptides, and show that the motifs are consistent with the peptides binding to models of the class I molecule encoded by the abundant cDNA. Finally, having shown for three haplotypes that there is a single dominantly expressed class I molecule at the level of RNA, protein, and antigenic peptide, we show that the motifs can explain the striking MHC-determined resistance and susceptibility to Rous sarcoma virus. These results are consistent with the concept of a ''minimal essential MHC'' for chickens, in strong contrast to typical mammals.antigen presentation ͉ avian ͉ essential ͉ evolution ͉ minimal
Little is known about the structure of major histocompatibility complex (MHC) molecules outside of mammals. Only one class I molecule in the chicken MHC is highly expressed, leading to strong genetic associations with infectious pathogens. Here, we report two structures of the MHC class I molecule BF2*2101 from the B21 haplotype, which is known to confer resistance to Marek's disease caused by an oncogenic herpesvirus. The binding groove has an unusually large central cavity, which confers substantial conformational flexibility to the crucial residue Arg9, allowing remodeling of key peptide-binding sites. The coupled variation of anchor residues from the peptide, utilizing a charge-transfer system unprecedented in MHC molecules, allows peptides with conspicuously different sequences to be bound. This promiscuous binding extends our understanding of ways in which MHC class I molecules can present peptides to the immune system and might explain the resistance of the B21 haplotype to Marek's disease.
Some years ago, we used our data for class I genes, proteins and peptide-binding specificities to develop the hypothesis that the chicken B-F/B-L region represents a "minimal essential MHC". In this view, the B locus contains the classical (highly expressed and polymorphic) class I alpha and class II beta multigene families, which are reduced to one or two members, with many other genes moved away or deleted from the chicken genome altogether. We found that a single dominantly expressed class I gene determines the immune response to certain infectious pathogens, due to peptide-binding specificity and cell-surface expression level. This stands in stark contrast to well-studied mammals like humans and mice, in which every haplotype is more-or-less responsive to every pathogen and vaccine, presumably due to the multigene family of MHC molecules present. In order to approach the basis for a single dominantly expressed class I molecule, we have sequenced a portion of the B complex and examined the location and polymorphism of the class I (B-F) alpha, TAP and class II (B-L) beta genes. The region is remarkably compact and simple, with many of the genes expected from the MHC of mammals absent, including LMP, class II alpha and DO genes as well as most class III region genes. However, unexpected genes were present, including tapasin and putative natural killer receptor genes. The region is also organised differently from mammals, with the TAPs in between the class I genes, the tapasin gene in between the class II (B-L) beta genes, and the C4 gene outside of the class I alpha and class II beta genes. The close proximity of TAP and class I alpha genes leads to the possibility of co-evolution, which can drive the use of a single dominantly expressed class I molecule with peptide-binding specificity like the TAP molecule. There is also a single dominantly expressed class II beta gene, but the reason for this is not yet clear. Finally, the presence of the C4 gene outside of the classical class I alpha and class II beta genes suggests the possibility that this organisation was ancestral, although a number of models of organisation and evolution are still possible, given the presence of the Rfp-Y region with non-classical class I alpha and class II beta genes as well as the presence of multigene families of B-G and rRNA genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.