Production of various structures by self-assembling single stranded DNA molecules is a widely used technology in the filed of DNA nanotechnology. Base sequences of single strands do predict the shape of the resulting nanostructure. Therefore, sequence design is crucial for the successful structure fabrication. This paper presents a sequence design algorithm based on mismatch minimization that can be applied to every desired DNA structure. With this algorithm, junctions, loops, single as well as double stranded regions, and very large structures up to several thousand base pairs can be handled. Thereby, the algorithm is fast for the most structures. Algorithm is Java-implemented. Its implementation is called Seed and is available publicly. As an example for a successful sequence generation, this paper presents the fabrication of DNA chain molecules consisting of double-crossover (DX) tiles as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.