Input data acquisition and preprocessing is time-consuming and difficult to handle and can have major implications on environmental modeling results. US EPA’s Hydrological Micro Services Precipitation Comparison and Analysis Tool (HMS-PCAT) provides a publicly available tool to accomplish this critical task. We present HMS-PCAT’s software design and its use in gathering, preprocessing, and evaluating precipitation data through web services. This tool simplifies catchment and point-based data retrieval by automating temporal and spatial aggregations. In a demonstration of the tool, four gridded precipitation datasets (NLDAS, GLDAS, DAYMET, PRISM) and one set of gauge data (NCEI) were retrieved for 17 regions in the United States and evaluated on 1) how well each dataset captured extreme events and 2) how datasets varied by region. HMS-PCAT facilitates data visualizations, comparisons, and statistics by showing the variability between datasets and allows users to explore the data when selecting precipitation datasets for an environmental modeling application.
Food security and the agricultural economy are both dependent on the temporal stability of crop yields. To this end, increasing crop diversity has been suggested as a means to stabilize agricultural yields amidst an ongoing decrease in cropping system diversity across the world. Although diversity confers stability in many natural ecosystems, in agricultural systems the relationship between crop diversity and yield stability is not yet well resolved across spatial scales. Here, we leveraged crop area, production, and price data from 1981–2020 to assess the relationship between crop diversity and the stability of both economic and caloric yields at the state level within the USA. We found that, after controlling for climatic instability and differences in irrigated area, crop diversity was positively associated with economic yield stability but negatively associated with caloric yield stability. Further, we found that crops with a propensity for increasing economic yield stability but reducing caloric yield stability were often found in the most diverse states. We propose that price responses to changes in production for high-value crops underly the positive relationship between diversity and economic yield stability. In contrast, spatial concentration of calorie-dense crops in low-diversity states contributes to the negative relationship between diversity and caloric yield stability. Our results suggest that the relationship between crop diversity and yield stability is not universal, but instead dependent on the spatial scale in question and the stability metric of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.