In this paper, motivated by human neurocognitive experiments, a model-free off-policy reinforcement learning algorithm is developed to solve the optimal tracking control of multiple-model linear discrete-time systems. First, an adaptive self-organizing map neural network is used to determine the system behavior from measured data and to assign a responsibility signal to each of system possible behaviors. A new model is added if a sudden change of system behavior is detected from the measured data and the behavior has not been previously detected. A value function is represented by partially weighted value functions. Then, the off-policy iteration algorithm is generalized to multiple-model learning to find a solution without any knowledge about the system dynamics or reference trajectory dynamics. The off-policy approach helps to increase data efficiency and speed of tuning since a stream of experiences obtained from executing a behavior policy is reused to update several value functions corresponding to different learning policies sequentially. Two numerical examples serve as a demonstration of the off-policy algorithm performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.