The complex nature of cyber-physical energy systems (CPES) makes systematic testing of new technologies for these setups challenging. Co-simulation has been identified as an efficient and flexible test approach that allows consideration of interdisciplinary dynamic interactions. However, basic coupling of simulation models alone fails to account for many of the challenges of simulation-based multi-domain testing such as expert collaboration in test planning. This paper illustrates an extended CPES test environment based on the co-simulation framework mosaik. The environment contains capabilities for simulation planning, uncertainty quantification and the development of multi-agent systems. An application case involving virtual power plant control is used to demonstrate the platform’s features. Future extensibility of the highly modular test environment is outlined.
Co-simulation is commonly used for the analysis of complex cyber-physical energy systems (CPES). Different domain-specific simulation tools and modeling approaches are used to simulate all or parts of the system. The co-simulation framework MOSAIK is a powerful tool to couple these simulation tools and models. This paper identifies the limitations of MOSAIK 2 for simulating systems that combine continuous and discrete behavior, and introduces the new version MOSAIK 3.0 with improved event capabilities to efficiently combine timestepped and discrete event simulation. Here it is explained how these extensions and new features of MOSAIK can be applied and implemented for extended co-simulation scenarios.
To tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.