Rivaroxaban is an oral, direct Factor Xa inhibitor that targets free and clot-bound Factor Xa and Factor Xa in the prothrombinase complex. It is absorbed rapidly, with maximum plasma concentrations being reached 2–4 h after tablet intake. Oral bioavailability is high (80–100 %) for the 10 mg tablet irrespective of food intake and for the 15 mg and 20 mg tablets when taken with food. Variability in the pharmacokinetic parameters is moderate (coefficient of variation 30–40 %). The pharmacokinetic profile of rivaroxaban is consistent in healthy subjects and across a broad range of different patient populations studied. Elimination of rivaroxaban from plasma occurs with a terminal half-life of 5–9 h in healthy young subjects and 11–13 h in elderly subjects. Rivaroxaban produces a pharmacodynamic effect that is closely correlated with its plasma concentration. The pharmacokinetic and pharmacodynamic relationship for inhibition of Factor Xa activity can be described by an Emax model, and prothrombin time prolongation by a linear model. Rivaroxaban does not inhibit cytochrome P450 enzymes or known drug transporter systems and, because rivaroxaban has multiple elimination pathways, it has no clinically relevant interactions with most commonly prescribed medications. Rivaroxaban has been approved for clinical use in several thromboembolic disorders.
Pharmacokinetic parameters of doses up to 10 mg rivaroxaban were dose proportional and had high oral bioavailability independent of food or whether administered as tablet or solution. High bioavailability (≥ 80%) of 15 mg and 20 mg rivaroxaban was achieved when taken with food; therefore, these doses need to be taken with food.
Unlike traditional anticoagulants, the more recently developed agents rivaroxaban, dabigatran and apixaban target specific factors in the coagulation cascade to attenuate thrombosis. Rivaroxaban and apixaban directly inhibit Factor Xa, whereas dabigatran directly inhibits thrombin. All three drugs exhibit predictable pharmacokinetic and pharmacodynamic characteristics that allow for fixed oral doses in a variety of settings. The population pharmacokinetics of rivaroxaban, and also dabigatran, have been evaluated in a series of models using patient data from phase II and III clinical studies. These models point towards a consistent pharmacokinetic and pharmacodynamic profile, even when extreme demographic factors are taken into account, meaning that doses rarely need to be adjusted. The exception is in certain patients with renal impairment, for whom pharmacokinetic modelling provided the rationale for reduced doses as part of some regimens. Although not routinely required, the ability to measure plasma concentrations of these agents could be advantageous in emergency situations, such as overdose. Specific pharmacokinetic and pharmacodynamic characteristics must be taken into account when selecting an appropriate assay for monitoring. The anti-Factor Xa chromogenic assays now available are likely to provide the most appropriate means of determining plasma concentrations of rivaroxaban and apixaban, and specific assays for dabigatran are in development.
BackgroundThe EINSTEIN-Jr program will evaluate rivaroxaban for the treatment of venous thromboembolism (VTE) in children, targeting exposures similar to the 20 mg once-daily dose for adults. A physiologically based pharmacokinetic (PBPK) model for pediatric rivaroxaban dosing has been constructed.MethodsWe quantitatively assessed the pharmacokinetics (PK) of a single rivaroxaban dose in children using population pharmacokinetic (PopPK) modelling and assessed the applicability of the PBPK model. Plasma concentration–time data from the EINSTEIN-Jr phase I study were analysed by non-compartmental and PopPK analyses and compared with the predictions of the PBPK model. Two rivaroxaban dose levels, equivalent to adult doses of rivaroxaban 10 mg and 20 mg, and two different formulations (tablet and oral suspension) were tested in children aged 0.5–18 years who had completed treatment for VTE.ResultsPK data from 59 children were obtained. The observed plasma concentration–time profiles in all subjects were mostly within the 90% prediction interval, irrespective of dose or formulation. The PopPK estimates and non-compartmental analysis-derived PK parameters (in children aged ≥6 years) were in good agreement with the PBPK model predictions.ConclusionsThese results confirmed the applicability of the rivaroxaban pediatric PBPK model in the pediatric population aged 0.5–18 years, which in combination with the PopPK model, will be further used to guide dose selection for the treatment of VTE with rivaroxaban in EINSTEIN-Jr phase II and III studies.Trial registrationClinicalTrials.gov number, NCT01145859; registration date: 17 June 2010.
Background: Activated coagulation factor XI (FXIa) contributes to the development and propagation of thrombosis but plays only a minor role in hemostasis; therefore, it is an attractive antithrombotic target. Objectives:To evaluate the pharmacology of asundexian (BAY 2433334), a small molecule inhibitor targeting FXIa, in vitro and in various rabbit models. Methods:The effects of asundexian on FXIa activity, selectivity versus other proteases, plasma thrombin generation, and clotting assays were evaluated. Antithrombotic effects were determined in FeCl 2 -and arterio-venous (AV) shunt models. Asundexian was administered intravenously or orally, before or during thrombus formation, and with or without antiplatelet drugs (aspirin and ticagrelor). Potential effects of asundexian on bleeding were evaluated in ear-, gum-, and liver injury models.Results: Asundexian inhibited human FXIa with high potency and selectivity. It reduced FXIa activity, thrombin generation triggered by contact activation or low concentrations of tissue factor, and prolonged activated partial thromboplastin time in human, rabbit, and various other species, but not in rodents. In the FeCl 2 -injury models, asundexian reduced thrombus weight versus control, and in the arterial model when added to aspirin and ticagrelor. In the AV shunt model, asundexian reduced thrombus weight when administered before or during thrombus formation. Asundexian alone or in combination with antiplatelet drugs did not increase bleeding times or blood loss in any of the models studied. Conclusions:Asundexian is a potent oral FXIa inhibitor with antithrombotic efficacy in arterial and venous thrombosis models in prevention and intervention settings, without increasing bleeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.