IntroductionChildhood acute myeloid leukemia (AML) is a rare and heterogeneous disease, with an incidence of 7 cases per million children younger than 15 years. In high-income countries, intensive therapy in conjunction with effective supportive care has increased survival rates to ϳ 70%. In 1990 and 2003, expert working groups made recommendations for diagnosis, outcomes, standardization of response criteria, and reporting standards for AML. 1,2 Recent improvements in identifying the molecular genetics and pathogenesis of AML have been implemented in the new World Health Organization (WHO) classification of AML. 3 These changes, and the definition of new diagnostic and prognostic markers and their associated targeted therapies, have prompted the update of earlier recommendations by an international group, on behalf of the European LeukemiaNet for AML in adults in 2010. 4 Despite broad overlap in the diagnostic and treatment recommendations for AML for children and adults, there are important differences in both the diagnostic criteria and disease management, which merit age-specific recommendations. The absence of published recommendations specific for pediatric AML motivated an international group of pediatric hematologists and oncologists (panel and participating groups see "Appendix") to develop evidence-and expert opinionbased consensus recommendations for the diagnosis and management of AML in children, incorporating emerging information on the biology of the disease. The scope of the review is presented in the "Appendix." Recommendations for specific subgroups are also included. This article discusses diagnostic procedures and initial workup, prognostic factors, response criteria, and management, and in particular focuses on differences between adults and children with AML. For personal use only. on May 12, 2018. by guest www.bloodjournal.org From WHO classification and pediatric AMLThe recent WHO 2008 classification is applicable to both adult and pediatric AML 3,5 and has been summarized by Döhner et al. 4 The classification contains most, but not all, cytogenetic subgroups specific to children. Differences in genetic background between children and adults are given in Table 1 and discussed further in "Cytogenetics."Compared with previous classifications (European Group of Immunologic Characterization of Leukemias [EGIL], WHO 2001), 6 the new WHO classification introduced a stringently defined subclass of acute leukemias of ambiguous lineage (mixed phenotype acute leukemias [MPALs]), mainly on the basis of detailed immunophenotypic criteria (Table 2) or presence of t(9;22)(q34; q11.2)/BCR-ABL1 or t(v;11q23)/MLL rearrangement. 3,5,6 The new classification aims to create uniform subgroups defined by unifying molecular targets, which allow selection of specific treatment. Diagnostic procedures and initial workupThe minimal diagnostic requirements in childhood AML are morphology with cytochemistry, immunophenotyping, karyotyping, FISH, and specific molecular genetics in the bone marrow, which is comparable ...
Key Points• Germline GATA2 mutations account for 15% of advanced and 7% of all primary pediatric MDS and do not influence overall survival. • The majority (72%) of adolescents with MDS and monosomy 7 carry an underlying GATA2 deficiency.Germline GATA2 mutations cause cellular deficiencies with high propensity for myeloid disease. We investigated 426 children and adolescents with primary myelodysplastic syndrome (MDS) and 82 cases with secondary MDS enrolled in 2 consecutive prospective studies of the European Working Group of MDS in Childhood (EWOG-MDS) conducted in Germany over a period of 15 years. Germline GATA2 mutations accounted for 15% of advanced and 7% of all primary MDS cases, but were absent in children with MDS secondary to therapy or acquired aplastic anemia. Mutation carriers were older at diagnosis and more likely to present with monosomy 7 and advanced disease compared with wild-type cases. For stratified analysis according to karyotype, 108 additional primary MDS patients registered with EWOG-MDS were studied. Overall, we identified 57 MDS patients with germline GATA2 mutations. GATA2 mutations were highly prevalent among patients with monosomy 7 (37%, all ages) reaching its peak in adolescence (72% of adolescents with monosomy 7). Unexpectedly, monocytosis was more frequent in GATA2-mutated patients. However, when adjusted for the selection bias from monosomy 7, mutational status had no effect on the hematologic phenotype. Finally, overall survival and outcome of hematopoietic stem cell transplantation (HSCT) were not influenced by mutational status. This study identifies GATA2 mutations as the most common germline defect predisposing to pediatric MDS with a very high prevalence in adolescents with monosomy 7. GATA2 mutations do not confer poor prognosis in childhood MDS. However, the high risk for progression to advanced disease must guide decision-making toward timely
Translocations involving chromosome 11q23 frequently occur in pediatric acute myeloid leukemia (AML) and are associated with poor prognosis. In most cases, the MLL gene is involved, and more than 50 translocation partners have been described. Clinical outcome data of the 11q23-rearranged subgroups are scarce because most 11q23 series are too small for meaningful analysis of subgroups, although some studies suggest that patients with t(9;11)(p22;q23) have a more favorable prognosis. We retrospectively collected outcome data of 756 children with 11q23-or MLL-rearranged AML from 11 collaborative groups to identify differences in outcome based on translocation partners. All karyotypes were centrally reviewed before assigning patients to subgroups. The event-free survival of 11q23/ MLL-rearranged pediatric AML at 5 years from diagnosis was 44% (؎ 5%), with large differences across subgroups (11% ؎ 5% to 92% ؎ 5%). Multivariate analysis identified the following subgroups as independent prognostic predictors: t(1;11)(q21;q23) (hazard ratio [HR] ؍ 0.1, P ؍ .004); t(6; 11)(q27;q23) (HR ؍ 2.2, P < .001); t(10; 11)(p12;q23) (HR ؍ 1.5, P ؍ .005); and t(10;11)(p11.2;q23) (HR ؍ 2.5, P ؍ .005). We could not confirm the favorable prognosis of the t(9;11)(p22;q23) subgroup. We identified large differences in outcome within 11q23/MLL-rearranged pediatric AML and novel subgroups based on translocation partners that independently predict clinical outcome. Screening for these translocation partners is needed for accurate treatment stratification at diagnosis. (Blood. 2009;114:2489-2496)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.