PURPOSE Infant acute lymphoblastic leukemia (ALL) is characterized by KMT2A ( MLL) gene rearrangements and coexpression of myeloid markers. The Interfant-06 study, comprising 18 national and international study groups, tested whether myeloid-style consolidation chemotherapy is superior to lymphoid style, the role of stem-cell transplantation (SCT), and which factors had independent prognostic value. MATERIALS AND METHODS Three risk groups were defined: low risk (LR): KMT2A germline; high risk (HR): KMT2A-rearranged and older than 6 months with WBC count 300 × 109/L or more or a poor prednisone response; and medium risk (MR): all other KMT2A-rearranged cases. Patients in the MR and HR groups were randomly assigned to receive the lymphoid course low-dose cytosine arabinoside [araC], 6-mercaptopurine, cyclophosphamide (IB) or experimental myeloid courses, namely araC, daunorubicin, etoposide (ADE) and mitoxantrone, araC, etoposide (MAE). RESULTS A total of 651 infants were included, with 6-year event-free survival (EFS) and overall survival of 46.1% (SE, 2.1) and 58.2% (SE, 2.0). In West European/North American groups, 6-year EFS and overall survival were 49.4% (SE, 2.5) and 62.1% (SE, 2.4), which were 10% to 12% higher than in other countries. The 6-year probability of disease-free survival was comparable for the randomized arms (ADE+MAE 39.3% [SE 4.0; n = 169] v IB 36.8% [SE, 3.9; n = 161]; log-rank P = .47). The 6-year EFS rate of patients in the HR group was 20.9% (SE, 3.4) with the intention to undergo SCT; only 46% of them received SCT, because many had early events. KMT2A rearrangement was the strongest prognostic factor for EFS, followed by age, WBC count, and prednisone response. CONCLUSION Early intensification with postinduction myeloid-type chemotherapy courses did not significantly improve outcome for infant ALL compared with the lymphoid-type course IB. Outcome for infant ALL in Interfant-06 did not improve compared with that in Interfant-99.
SummaryBackgroundTrials of imatinib have provided evidence of activity in adults with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (ALL), but the drug's role when given with multidrug chemotherapy to children is unknown. This study assesses the safety and efficacy of oral imatinib in association with a Berlin–Frankfurt–Munster intensive chemotherapy regimen and allogeneic stem-cell transplantation for paediatric patients with Philadelphia-chromosome-positive ALL.MethodsPatients aged 1–18 years recruited to national trials of front-line treatment for ALL were eligible if they had t(9;22)(q34;q11). Patients with abnormal renal or hepatic function, or an active systemic infection, were ineligible. Patients were enrolled by ten study groups between 2004 and 2009, and were classified as good risk or poor risk according to early response to induction treatment. Good-risk patients were randomly assigned by a web-based system with permuted blocks (size four) to receive post-induction imatinib with chemotherapy or chemotherapy only in a 1:1 ratio, while all poor-risk patients received post-induction imatinib with chemotherapy. Patients were stratified by study group. The chemotherapy regimen was modelled on a Berlin–Frankfurt–Munster high-risk backbone; all received four post-induction blocks of chemotherapy after which they became eligible for stem-cell transplantation. The primary endpoints were disease-free survival at 4 years in the good-risk group and event-free survival at 4 years in the poor-risk group, analysed by intention to treat and a secondary analysis of patients as treated. The trial is registered with EudraCT (2004-001647-30) and ClinicalTrials.gov, number NCT00287105.FindingsBetween Jan 1, 2004, and Dec 31, 2009, we screened 229 patients and enrolled 178: 108 were good risk and 70 poor risk. 46 good-risk patients were assigned to receive imatinib and 44 to receive no imatinib. Median follow-up was 3·1 years (IQR 2·0–4·6). 4-year disease-free survival was 72·9% (95% CI 56·1–84·1) in the good-risk, imatinib group versus 61·7% (45·0–74·7) in the good-risk, no imatinib group (p=0·24). The hazard ratio (HR) for failure, adjusted for minimal residual disease, was 0·63 (0·28–1·41; p=0·26). The as-treated analysis showed 4-year disease-free survival was 75·2% (61·0–84·9) for good-risk patients receiving imatinib and 55·9% (36·1–71·7) for those who did not receive imatinib (p=0·06). 4-year event-free survival for poor-risk patients was 53·5% (40·4–65·0). Serious adverse events were much the same in the good-risk groups, with infections caused by myelosuppression the most common. 16 patients in the good-risk imatinib group versus ten in the good-risk, no imatinib group (p=0·64), and 24 in the poor-risk group, had a serious adverse event.InterpretationOur results suggests that imatinib in conjunction with intensive chemotherapy is well tolerated and might be beneficial for treatment of children with Philadelphia-chromosome-positive ALL.FundingProjet Hospitalier de Recherche Clinique-Cancer (France)...
Acute lymphoblastic leukemia (ALL) in infants (< 1 year) is characterized by a poor prognosis and a high incidence of MLL translocations. Several studies demonstrated the unique gene expression profile associated with MLL-rearranged ALL, but generally small cohorts were analyzed as uniform patient groups regardless of the type of MLL translocation, whereas the analysis of translocationnegative infant ALL remained unacknowledged. Here we generated and analyzed primary infant ALL expression profiles (n ؍ 73) typified by translocations t(4;11), t(11;19), and t(9;11), or the absence of MLL translocations. Our data show that MLL germline infant ALL specifies a gene expression pattern that is different from both MLL-rearranged infant ALL and pediatric precursor B-ALL. Moreover, we demonstrate that, apart from a fundamental signature shared by all MLL-rearranged infant ALL samples, each type of MLL translocation is associated with a translocation-specific gene expression signature. Finally, we show the existence of
MLL-rearranged infant acute lymphoblastic leukemia (ALL) remains the most aggressive type of childhood leukemia, displaying a unique gene expression profile. Here we hypothesized that this characteristic gene expression signature may have been established by potentially reversible epigenetic modifications. To test this hypothesis, we used differential methylation hybridization to explore the DNA methylation patterns underlying MLLrearranged ALL in infants. The obtained results were correlated with gene expression data to confirm gene silencing as a result of promoter hypermethylation. Distinct promoter CpG island methylation patterns separated different genetic subtypes of MLL-rearranged ALL in infants. MLL translocations t(4;11) and t(11;19) characterized extensively hypermethylated leukemias, whereas t(9;11)-positive infant ALL and infant ALL carrying wildtype MLL genes epigenetically resembled normal bone marrow. Furthermore, the degree of promoter hypermethylation among infant ALL patients carrying t(4; 11) or t(11;19) appeared to influence relapse-free survival, with patients displaying accentuated methylation being at high relapse risk. Finally, we show that the demethylating agent zebularine reverses aberrant DNA methylation and effectively induces apoptosis in MLLrearranged ALL cells. Collectively these data suggest that aberrant DNA methylation occurs in the majority of MLLrearranged infant ALL cases and guides clinical outcome. Therefore, inhibition of aberrant DNA methylation may be an important novel therapeutic strategy for MLL-rearranged ALL in infants. (Blood. 2009;114:5490-5498) IntroductionAlthough long-term survival rates in childhood acute lymphoblastic leukemia (ALL) exceed 80%, 1 the survival chances of infants (Ͻ 1 year of age) still range between 20% and 50%. 2 Approximately 80% of infants with ALL carry chromosomal translocations involving the MLL (mixed lineage leukemia) gene, 3 fusing the N-terminal portion of the MLL gene to the C-terminal region of one of its translocation partner genes. The most frequent MLL translocations among infant ALL patients are t(4;11), t(11;19), and t(9;11), 2,4 giving rise to the fusion proteins MLL-AF4, MLL-ENL, and MLL-AF9. These chimeric MLL fusion proteins exhibit pronounced transforming capacities 5 and independently contribute to an unfavorable prognosis. 2,6 As a member of the trithorax gene family, MLL is involved in transcriptional regulation. 7 Therefore, structural alterations of this gene may be expected to affect its function, presumably leading to transcriptional deregulation. Not surprisingly, in recent gene expression profiling studies, 8,9 the authors characterized MLL-rearranged ALL as a unique type of leukemia that is genetically clearly separable from other ALL subtypes. Because epigenetic modifications affect gene expression patterns, 10 we hypothesized that the specific gene expression profiles associated with MLL-rearranged infant ALL may well be driven by epigenetic changes, which recently have been established to play important role...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.