El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
With recent methodological advances, molecular markers are increasingly used for semi‐quantitative analyses of fungal communities. The aim to preserve quantitative relationships between genotypes through PCR places new demands on primers to accurately match target sites and provide short amplicons. The internal transcribed spacer (ITS) region of the ribosome encoding genes is a commonly used marker for many fungal groups. Here, we describe three new primers – fITS7, gITS7 and fITS9, which may be used to amplify the fungal ITS2 region by targeting sites in the 5.8S encoding gene. We evaluated the primers and compared their performance with the commonly used ITS1f primer by 454‐sequencing of both artificially assembled templates and field samples. When the entire ITS region was amplified using the ITS1f/ITS4 primer combination, we found strong bias against species with longer amplicons. This problem could be overcome by using the new primers, which produce shorter amplicons and better preserve the quantitative composition of the template. In addition, the new primers yielded more diverse amplicon communities than the ITS1f primer.
Boreal forest soils function as a terrestrial net sink in the global carbon cycle. The prevailing dogma has focused on aboveground plant litter as a principal source of soil organic matter. Using (14)C bomb-carbon modeling, we show that 50 to 70% of stored carbon in a chronosequence of boreal forested islands derives from roots and root-associated microorganisms. Fungal biomarkers indicate impaired degradation and preservation of fungal residues in late successional forests. Furthermore, 454 pyrosequencing of molecular barcodes, in conjunction with stable isotope analyses, highlights root-associated fungi as important regulators of ecosystem carbon dynamics. Our results suggest an alternative mechanism for the accumulation of organic matter in boreal forests during succession in the long-term absence of disturbance.
Novel high-throughput sequencing methods outperform earlier approaches in terms of resolution and magnitude. They enable identification and relative quantification of community members and offer new insights into fungal community ecology. These methods are currently taking over as the primary tool to assess fungal communities of plant-associated endophytes, pathogens, and mycorrhizal symbionts, as well as free-living saprotrophs.Taking advantage of the collective experience of six research groups, we here review the different stages involved in fungal community analysis, from field sampling via laboratory procedures to bioinformatics and data interpretation. We discuss potential pitfalls, alternatives, and solutions.Highlighted topics are challenges involved in: obtaining representative DNA/RNA samples and replicates that encompass the targeted variation in community composition, selection of marker regions and primers, options for amplification and multiplexing, handling of sequencing errors, and taxonomic identification.Without awareness of methodological biases, limitations of markers, and bioinformatics challenges, large-scale sequencing projects risk yielding artificial results and misleading conclusions.
Summary• Our understanding of how saprotrophic and mycorrhizal fungi interact to recirculate carbon and nutrients from plant litter and soil organic matter is limited by poor understanding of their spatiotemporal dynamics.• In order to investigate how different functional groups of fungi contribute to carbon and nitrogen cycling at different stages of decomposition, we studied changes in fungal community composition along vertical profiles through a Pinus sylvestris forest soil. We combined molecular identification methods with 14 C dating of the organic matter, analyses of carbon:nitrogen (C:N) ratios and 15 N natural abundance measurements.• Saprotrophic fungi were primarily confined to relatively recently ( < 4 yr) shed litter components on the surface of the forest floor, where organic carbon was mineralized while nitrogen was retained. Mycorrhizal fungi dominated in the underlying, more decomposed litter and humus, where they apparently mobilized N and made it available to their host plants.• Our observations show that the degrading and nutrient-mobilizing components of the fungal community are spatially separated. This has important implications for biogeochemical studies of boreal forest ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.