El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
MycoCosm is a fungal genomics portal (http://jgi.doe.gov/fungi), developed by the US Department of Energy Joint Genome Institute to support integration, analysis and dissemination of fungal genome sequences and other ‘omics’ data by providing interactive web-based tools. MycoCosm also promotes and facilitates user community participation through the nomination of new species of fungi for sequencing, and the annotation and analysis of resulting data. By efficiently filling gaps in the Fungal Tree of Life, MycoCosm will help address important problems associated with energy and the environment, taking advantage of growing fungal genomics resources.
l e t t e r sTo elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell walldegrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.Fungi are often described as either saprotrophs, which degrade complex organic substrates, or biotrophs, which obtain carbon compounds from living hosts. Among the latter, ECM fungi provide crucial ecological services in interacting with forest trees. They are portrayed as mutualists trading host photoassimilates for nutrients and having limited capacity to decompose soil lignocellulose 1-3 , as a result of their reduced repertoire of PCWDEs 4-6 . However, recent studies are challenging this view [7][8][9][10] . An improved understanding of the ability of ECM fungi to decompose lignocellulose is needed to resolve mechanisms of nutrient cycling in forests. The ECM lifestyle in Laccaria bicolor is associated with the expression of new mycorrhizainduced small secreted proteins (MiSSPs) that are required for establishment of symbiosis 11,12 . Mycorrhizal symbioses have arisen repeatedly during fungal evolution and include not only ECM associations but also those with ERM and ORM mycorrhizae 13 . It is not known whether these symbioses share the genomic features found in L. bicolor 4 and Tuber melanosporum 5 . Here we assess whether there Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists
Significance
Wood decay fungi have historically been characterized as either white rot, which degrade all components of plant cell walls, including lignin, or brown rot, which leave lignin largely intact. Genomic analyses have shown that white-rot species possess multiple lignin-degrading peroxidases (PODs) and expanded suites of enzymes attacking crystalline cellulose. To test the adequacy of the white/brown-rot categories, we analyzed 33 fungal genomes. Some species lack PODs, and thus resemble brown-rot fungi, but possess the cellulose-degrading apparatus typical of white-rot fungi. Moreover, they appear to degrade lignin, based on decay analyses on wood wafers. Our results indicate that the prevailing paradigm of white rot vs. brown rot does not capture the diversity of fungal wood decay mechanisms.
TTh he e p pl la an nt t c ce el ll l w wa al ll l d de ec co om mp po os si in ng g m ma ac ch hi in ne er ry y u un nd de er rl li ie es s t th he e f fu un nc ct ti io on na al l d di iv ve er rs si it ty y o of f f fo or re es st t f fu un ng gi i T Th he e p pl la an nt t c ce el ll l w wa al ll l d de ec co om mp po os si in ng g m ma ac ch hi in ne er ry y u un nd de er rl li ie es s t th he e f fu un nc ct ti io on na al l d di iv ve er rs si it ty y o of f f fo or re es st t f fu un ng gi i
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.