Insects of the order Hymenoptera are biologically and economically important members of natural and agro ecosystems and exhibit diverse biologies, mating systems, and sex pheromones. We review what is known of their sex pheromone chemistry and function, paying particular emphasis to the Hymenoptera Aculeata (primarily ants, bees, and sphecid and vespid wasps), and provide a framework for the functional classification of their sex pheromones. Sex pheromones often comprise multicomponent blends derived from numerous exocrine tissues, including the cuticle. However, very few sex pheromones have been definitively characterized using bioassays, in part because of the behavioral sophistication of many Aculeata. The relative importance of species isolation versus sexual selection in shaping sex pheromone evolution is still unclear. Many species appear to discriminate among mates at the level of individual or kin/colony, and they use antiaphrodisiacs. Some orchids use hymenopteran sex pheromones to dupe males into performing pseudocopulation, with extreme species specificity.
Complex eusocial insect societies are generally matrifilial, suggesting kin selection has been of importance in their development. For simpler social systems, factors favouring their existence, in particular kin selection, have rarely been studied. Communal nesting is one of these simple social organizations, and is found in a diversity of insect species. To examine whether kin selection may play a role in the evolution and maintenance of communality, we estimated genetic relatedness of nestmate females of the facultatively communal bee, Andrena jacobi. Microsatellite loci were developed for this species and used to analyse individuals from two populations. Loci were variable, they were in heterozygote deficit and showed positive inbreeding coefficients. This may arise from nonrandom mating; previous observations (Paxton & Tengö 1996) indicate that a large proportion of females mate intranidally with nestmate males in their natal nests before first emerging. Nestmate relatedness was low, no different from zero for all loci in one population and for three of four loci in the other population. The large number of nestmates sharing a common nest (up to 594) may explain the low relatedness estimates, although relatedness was also independent of the number of females sharing a nest. Lack of inclusive fitness payoffs could constrain social evolution in this communal species.
Complex eusocial insect societies are generally matrifilial, suggesting kin selection has been of importance in their development. For simpler social systems, factors favouring their existence, in particular kin selection, have rarely been studied. Communal nesting is one of these simple social organizations, and is found in a diversity of insect species. To examine whether kin selection may play a role in the evolution and maintenance of communality, we estimated genetic relatedness of nestmate females of the facultatively communal bee, Andrena jacobi. Microsatellite loci were developed for this species and used to analyse individuals from two populations. Loci were variable, they were in heterozygote deficit and showed positive inbreeding coefficients. This may arise from nonrandom mating; previous observations (Paxton & Tengö 1996) indicate that a large proportion of females mate intranidally with nestmate males in their natal nests before first emerging. Nestmate relatedness was low, no different from zero for all loci in one population and for three of four loci in the other population. The large number of nestmates sharing a common nest (up to 594) may explain the low relatedness estimates, although relatedness was also independent of the number of females sharing a nest. Lack of inclusive fitness payoffs could constrain social evolution in this communal species.
Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1-3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony's queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.