The Sancus security architecture for networked embedded devices was proposed in 2013 at the USENIX Security conference. It supports remote (even third-party) software installation on devices while maintaining strong security guarantees. More specifically, Sancus can remotely attest to a software provider that a specific software module is running uncompromised and can provide a secure communication channel between software modules and software providers. Software modules can securely maintain local state and can securely interact with other software modules that they choose to trust. Over the past three years, significant experience has been gained with applications of Sancus, and several extensions of the architecture have been investigated—both by the original designers as well as by independent researchers. Informed by these additional research results, this journal version of the Sancus paper describes an improved design and implementation, supporting additional security guarantees (such as confidential deployment) and a more efficient cryptographic core. We describe the design of Sancus 2.0 (without relying on any prior knowledge of Sancus) and develop and evaluate a prototype FPGA implementation. The prototype extends an MSP430 processor with hardware support for the memory access control and cryptographic functionality required to run Sancus. We report on our experience using Sancus in a variety of application scenarios and discuss some important avenues of ongoing and future work.
Recent controlled-channel attacks exploit timing differences in the rudimentary fetch-decode-execute logic of processors. These new attacks also pose a threat to software on embedded systems. Even when Trusted Execution Environments (TEEs) are used, interrupt latency attacks allow untrusted code to extract application secrets from a vulnerable enclave by scheduling interruption of the enclave. Constant-time programming is effective against these attacks but, as we explain in this paper, can come with some disadvantages regarding performance. To deal with this new threat, we propose a novel algorithm that hardens programs during compilation by aligning the execution time of corresponding instructions in secret-dependent branches. Our results show that, on a class of embedded systems with deterministic execution times, this approach eliminates interrupt latency side-channel leaks and mitigates limitations of constant-time programming. We have implemented our approach in the LLVM compiler infrastructure for the Sancus TEE, which extends the openMSP430 microcontroller, and we discuss applicability to other architectures. We make our implementation and benchmarks available for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.