We describe a general construction of a module A from a given module B such that Ext(B, A) = 0, and we apply it to answer several questions on splitters, cotorsion theories and saturated rings.
We apply tilting theory to study modules of finite projective dimension. We introduce the notion of finite and cofinite type for tilting and cotilting classes of modules, respectively, showing that, for each dimension, there is a bijection between these classes and resolving classes of modules.\ud
We then focus on Iwanaga-Gorenstein rings. Using tilting theory, we prove the first finitistic dimension conjecture for these rings. Moreover, we characterize them among noetherian rings by the property that Gorenstein injective modules form a tilting class. Finally, we give an explicit construction of families of (co)tilting modules of (co)finite type for one-dimensional commutative Gorenstein ring
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.