Abstract. The deformation associated with several small, brittle faults was investigated on both microscopic and macroscopic scales. While the dominant macroscopic structures are solution cleavage planes and secondary shear fractures, the dominant microscopic deformation structures are healed tensile microfractures. The fault-related microfractures display densities and orientations distinct from the background microfracture population. These densities and orientations are consistent with formation within the altered stress fields of propagating shear fracture tips. This microfracture population is used to define the fault process zone associated with growth of the macroscopic fault plane. Process zone microfractures show logarithmic density increases with proximity to the fault, a constant maximum density that is independent of fault length, and orientations which can be used to infer the direction of propagation of the fault plane. The width of the process zone scales linearly with fault length with a proportionality constant of the order of 10 -2 '
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.