Hydrogen sulfide (H2S) is toxic to all species used in aquaculture. The extensive fish mortalities inflicted by H2S-poisoning can cause significant direct economic losses. Called the silent killer among scholars and fish farmers, H2S is highly soluble in aquatic environments and has significant damage potential; once detected, the time for mitigation actions is limited as fish stocks are rapidly impacted by the gas. The detection of H2S at low concentrations is challenging with the state-of-the-art sensors used today. Despite its significant damage potential, the industry has not been able to provide a reliable yet user-friendly system to address this. The aim of this paper is to provide a step forward in this direction by introducing a system for real-time monitoring of H2S at sub µg/L levels in RAS. The SeaRAS AquaSense System (AQS) utilizes real-time monitoring of H2S in parallel with other water quality parameters, such as CO2, O2, pH, and temperature, through a set of autonomous wireless-based sensor units installed in multiple locations in RAS. The system is calibrated and verified further by an autonomous calibration system where substrates of known values are brought to the sensor at a defined interval, offering the user data confidence that is exceptional and of high value. The H2S levels are measured in real-time at high-temporal resolution (down to 0.05 µg/L). By having units located in distinct locations in the water treatment loop, a true real-time monitoring of water treatment processes in RAS is given. Preliminary results provide new insights to the mechanisms behind H2S formation in operational RAS, and, more important, provide a basis for the development of risk-reducing actions and means for risk mitigation through degassing processes. By measuring real time simultaneously in multiple locations and in the exhaust of the degasser, a true mass balance of the system can be formulated by the given amount of feed, measured parameters by sensors and the known flow rate. By using the SeaRAS AquaSense System it is also possible to track the amount of H2S that leaks to the recirculating water per m2 of biofilm in RAS. This is a critical parameter and of high priority to be considered in the context of coping with the H2S-induced risks in RAS. The finding of this work highlights that the formation of toxic H2S is inevitable in RAS-process, ergo, the focus of the industry should instead go toward how to cope with it. In this regard, the SeaRAS AquaSense System provides a step forward towards a practical solution for managing H2S-poisoning risk in aquaculture. This work suggests a need for future research on determining acceptable limits for H2S in water quality context in RAS and investigating a new insight on interaction between H2S and other water quality parameters such as CO2.
The Nansen Legacy Q3 cruise, 5-27 August 2019, initiated the seasonal investigations of the Nansen Legacy transect. The transect represent an environmental gradient going through the northern Barents Sea, and included 7 process stations (P1-P7) lasting 6-53 hrs. CTD stations were taken to increase the hydrographic resolution on the transect. The program included measurements and sampling from the atmosphere, sea ice, ocean and sea floor. Data collected ranged from physical observations, chemical, biological and geological data collection, and the aim was to link observations and measurements to improve our understanding of the systems involving both climate, human impacts and the ecosystems. Deployment of moorings and gliders extended the observational capacity in time and space, outside the cruise period.
This cruise was the second of in total four seasonal cruises with RV Kronprins Haakon in 2019/20 focusing on biology in the project Arven etter Nansen (AeN). This seasonal cruise was named Q4 (Q4= 4th quarter of the year) investigating in total 17 stations of the established AeN transect along 34 E in the Northern Barents Sea and adjacent Arctic Basin from 76 to 82°N (see Fig. 1 below). The cruise addressed objectives of the research foci in RF1 on Physical drivers, RF2 on Human drivers, RF3 on the living Barents Sea and RA-C Technology and method development, and collected a multitude of data along the Nansen Legacy transect which was ice covered except the southernmost station P1. In addition to in situ sampling, on board experiments were conducted to quantify biological processes, rates and interactions that will also be important feeds into modeling work and projections in RF4 The future Barents Sea. The cruise took a variety of continuous ship measurements (Weather station, EK80, EM203, ADCP, thermosalinograph, pCO2 underway) as well as station measurements such as CTD with water samples, biological sampling of the benthos (box corer, benthic trawl), water column (multinet, MIK net, macrozooplankton trawl and many other smaller nets) and sea ice (snow, ice cores, water just underneath sea ice). In addition, experimental work (respiration, grazing and egg production) was conducted in the ship’s laboratories. The chemistry team onboard measured oxygen, nutrients and pH from standard depths on most CTD stations and sea ice samples. The cruise started in Longyearbyen and ended in Tromsø (28.11.-17.12.2019). The sampling began at the deep (>3000 m) northernmost station of the transect, Stn. P7, and continued along the southward transect until station P1, in open water and Atlantic dominated water masses. During the expedition the Barents Sea was characterized by a relatively large sea ice cover with consolidated sea ice all the way from P7 to P2. The Polar Front was located just north of P1. All process stations were sampled (P7-P1) as well as two ice stations: one close to P7 ad one close to P5. At the southernmost station P1, stormy weather challenged sampling, but most tasks were in the end accomplished except of deploying the box corer, sediment trap and the AUV. These operations were considered too challenging due to strong drift and ship movement, and it was not safe to conduct small boat operations. Challenges with the box corer was also experienced at the deep station P7 due to technical issues. In the end, most work was accomplished despite challenging weather, sea ice conditions and some technical issues making this cruise successful in gaining new important knowledge about the Northern Barents Sea in the polar night season which is extremely poorly studied. The overall high biological activity and biomass at this time of the year, November-December, was surprising for most of us.
The Nansen Legacy Joint Cruise 2, part 1 (JC2-1) 12-29 July 2021, continued the investigation of the interannual variability during the late summer season. At the same time will the cruise provide a late summer reference for the seasonal investigation that was separated to late summer and polar night 2019, and winter and spring 2021. The transect represents an environmental gradient going through the northern Barents Sea, and included 7 process stations (P1-P7) lasting 10-39 hrs. Additional CTD stations (NLEG) were taken between the process stations to increase the hydrographic resolution on the transect. The work started at 76°N at the open Atlantic Water dominated station P1, was sea ice covered from station P4 at 79 45.00 °N and included deep water stations at the P7 station at 82°N in the Nansen Basin. The program included measurements and sampling from the atmosphere, sea ice, ocean and sea floor. Data collected includes several disciplines to map the physical environment, the chemical characterization and biological communities. Key parameters from the Nansen Legacy joint cruises were selected and included in this reduced sampling program, compared to the other joint cruises. An important aim was to characterize the northern Barents Sea to map the interannual variability, but also to see how the proceeding winter and spring conditions has impacted the environment and conditions this year. A third task is to carry out a shelf investigation that can complement the investigations in the deep Arctic Basin starting in late August. Tests and improvements of a modified pelagic trawl (Harstad) were carried out as preparations for the Arctic Basin cruise in late August 2021.
The Nansen Legacy (NL) JC3 cruise (19.02.-11.03.2022) aimed to fill regional, temporal and scientific gaps following the earlier NL cruises, in particular during the winter-to-spring transition and in the northern part of the NL transect to the Nansen Basin. Joint physical, chemical, and biological sampling and experiments for new technology addressed aims of RF1, RF2, RF3 and RA-C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.