The hypothesis that predation is the cause of the regular small rodent population oscillations observed in boreal and Arctic regions has long been debated. Within this hypothesis, it is proposed that the most likely predators to cause these destabilizing effects are sedentary specialists, with small mustelids being possible candidates. One such case would be the highly specialized least weasel (Mustela nivalis) driving the Norwegian lemming (Lemmus lemmus) cycle in Fennoscandia. These predators are often elusive and therefore distribution data can only be based on field signs, which is problematic when various mustelid species are sympatric, such as weasels and stoats (Mustela erminea). Here we present the results of using mustelid faeces in predated winter lemming nests to correctly identify the predator and thus discern which species exerts the strongest predation pressure on lemming winter populations. Samples were obtained during different phases in the lemming cycle, spanning 6 years, to account for different prey densities. Faecal mitochondrial DNA extraction and amplification of a 400-bp fragment was successful in 92/114 samples (81%); the sequencing of these samples proved that most predation occurrences (83%) could be attributed to the least weasel. These findings support the hypothesis that weasels in particular show high specificity in predation and could therefore be candidates to driving the lemming cycle in this area. We conclude that DNA analysis of faecal remains around predated nests can be a useful tool for further investigations concerning predator–prey interactions in the tundra.
The small mammal community (Orders Rodentia and Eulipotyphla) was evaluated in one single locality in coastal Catalonia in relation to human-induced changes in land use. Low detectability of some species drove us to assess the small mammal assemblages analysing barn owl (Tyto alba) pellets sampled in the same nesting site for a period of thirty years. The objectives were to 1) describe variations in landscape use, 2) document small mammal community changes and 3) relate these changes to those in land use. Species richness did not seem to vary with changes in land use, however, when species were separated into guilds (open, forest and synanthropic), significant differences could be observed. The open guild decreased by 6%, while the forest and synanthropic guild increased by 5% and 2% respectively. Abandonment of arable land, expansion of forested areas and an increase in urbanisation were closely linked to these guild changes, while some individual species showed variations which paralleled climatic changes. Loss of adequate open habitat for this raptor was highlighted by a species substitution, with the tawny owl (Strix aluco) occupying the nesting site previously used by the barn owl during the last years of the study. Barn owl diet monitoring therefore proves to be a useful tool to analyse small mammal community responses to changes in the environment, allowing for more specific and viable conservation plans for both small mammals and barn owls.
Spatially synchronous fluctuations of animal populations have profound ecological consequences, especially in northern latitudes. Spatially coupled fluctuations are often seen in small rodent populations, albeit with local and regional variations. While both resource limitation and predation influence rodent dynamics, their relative importance for generating spatial variation is less clear, particularly during winter. In this study, we quantify spatial variation in winter abundance of the Norwegian lemming (Lemmus lemmus) across three ecologically connected mountain areas in northern Sweden and evaluate whether the relative strength of bottom‐up and top‐down regulation influences such variation. Our data included observations of predated and nonpredated winter nests as well as environmental characteristics of nest locations and nest predation. While the direction of annual changes in lemming nest abundance was perfectly synchronized among the three areas, there were differences in nest abundance, potentially caused by contrasting amplitudes of temporal fluctuations in lemming winter populations. Mustelid predation was positively associated with decreasing lemming populations but did not differ in occurrence among the three areas. Lemming nests were predominantly observed in meadows, whereas areas prone to flooding and close to the tree line were underrepresented. Mustelid predation was most common close to the tree line, but not associated with geomorphological characteristics related to snow depth. We suggest that the observed differences in lemming winter abundances were caused by variations in the relative strength of bottom‐up and top‐down regulation in the three mountain areas. We encourage further studies evaluating how the relative strength of different processes influence local population regulation, and how such processes influence spatial variation in animal population dynamics at different spatial scales.
In the Arctic tundra, climate-induced emergence of the red fox ( Vulpes vulpes (Linnaeus, 1758)), a competitor to the Arctic fox ( Vulpes lagopus (Linnaeus, 1758)), is predicted to influence predation patterns of both fox mesopredators. In this study, we (i) identified predator species from scats through an established barcoding approach and (ii) explored the use of a cheap, quick barcoding method of fox feces ( n = 103). We investigated differences in diet between the red fox (predicted generalist predator) and Arctic fox (predicted specialist predator) over 2 years with varying prey abundance. We amplified short DNA fragments (<200 bp) from small rodents, birds and hares. For both predators, there was a high frequency of occurrence of rodents (38%–69%) identifying them as primary prey species and birds as secondary prey species (13%–31%). This demonstrates the strength of a straightforward DNA barcoding method for dietary analyses in sympatric fox predators, with species-level resolution of prey. Barcoding is a promising tool for future dietary studies; however, a few methodological improvements, along with extended sampling, are needed for a more complete assessment of fox predation patterns. Integrating high-resolution dietary analyses have great potential to enhance our understanding of predation patterns in Arctic tundra communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.