Caseinolytic protease P (ClpP) is an important regulator of Staphylococcus aureus pathogenesis. A high-throughput screening for inhibitors of ClpP peptidase activity led to the identification of the first non-covalent binder for this enzyme class. Co-crystallization of the small molecule with S. aureus ClpP revealed a novel binding mode: Because of the rotation of the conserved residue proline 125, ClpP is locked in a defined conformational state, which results in distortion of the catalytic triad and inhibition of the peptidase activity. Based on these structural insights, the molecule was optimized by rational design and virtual screening, resulting in derivatives exceeding the potency of previous ClpP inhibitors. Strikingly, the conformational lock is overturned by binding of ClpX, an associated chaperone that enables proteolysis by substrate unfolding in the ClpXP complex. Thus, regulation of inhibitor binding by associated chaperones is an unexpected mechanism important for ClpP drug development.
Gram-negative bacteria represent a challenging task for antibacterial drug discovery owing to their impermeable cell membrane and restricted uptake of small molecules. We herein describe the synthesis of natural-product-derived epoxycyclohexenones and explore their antibiotic activity against several pathogenic bacteria. A compound with activity against Salmonella Typhimurium was identified, and the target enzymes were unraveled by quantitative chemical proteomics. Importantly, two protein hits were linked to bacterial stress response, and corresponding assays revealed an elevated susceptibility to reactive oxygen species upon compound treatment. The consolidated inhibition of these targets provides a rationale for antibacterial activity and highlights epoxycyclohexenones as natural product scaffolds with suitable properties for killing Gram-negative Salmonella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.