Prolonged auditory sensory deprivation leads to brain reorganization, indicated by functional enhancement in remaining sensory systems, a phenomenon known as cross-modal plasticity.In this study we investigated differences in functional brain network shifts from eyes-closed to eyes-open conditions between deaf and hearing people. Electroencephalography activity was recorded in deaf (N = 71) and hearing people (N = 122) living in rural Africa, which yielded a unique data-set of congenital, pre-lingual and post-lingual deaf people, with a divergent experience in American Sign Language. Functional networks were determined from the synchronization of electroencephalography signals between fourteen electrodes distributed over the scalp. We studied the synchronization between the auditory and visual cortex and performed whole-brain minimum spanning tree analysis based on the phase lag index of functional connectivity. This tree analysis accounts for variations in global network density and allows unbiased characterization of functional network backbones. We found increased functional connectivity between the auditory and visual cortex in deaf people during the eyesclosed condition in both the alpha and beta bands. Furthermore, we found functional network backbone shifts both in deaf and healthy people as they went from eyes-closed to eyes-open conditions. In both the alpha and beta band the deafs' brain showed larger functional backbone-shifts in node strength compared to controls. In the alpha band this shift in network strength differed among deaf participants and depended on type of deafness: congenital, prelingual or post-lingual deafness. In addition, a correlation was found between functional backbone characteristics and experience of sign language. Our study revealed more insights in functional network reorganization specifically due to prolonged lack of auditory input, but might also be helpful for sensory deprivation and cross-modal plasticity in general. Global cortical network reorganization in deaf people supports the plastic capacities of the young brain. The differences between type of deafness stresses that etiology affects functional .
Prolonged auditory sensory deprivation leads to brain reorganization, indicated by functional enhancement in remaining sensory systems, a phenomenon known as cross-modal plasticity.In this study we investigated differences in functional brain network shifts from eyes-closed to eyes-open conditions between deaf and hearing people. Electroencephalography activity was recorded in deaf (N = 71) and hearing people (N = 122) living in rural Africa, which yielded a unique data-set of congenital, pre-lingual and post-lingual deaf people, with a divergent experience in American Sign Language. Functional networks were determined from the synchronization of electroencephalography signals between fourteen electrodes distributed over the scalp. We studied the synchronization between the auditory and visual cortex and performed whole-brain minimum spanning tree analysis based on the phase lag index of functional connectivity. This tree analysis accounts for variations in global network density and allows unbiased characterization of functional network backbones. We found increased functional connectivity between the auditory and visual cortex in deaf people during the eyesclosed condition in both the alpha and beta bands. Furthermore, we found functional network backbone shifts both in deaf and healthy people as they went from eyes-closed to eyes-open conditions. In both the alpha and beta band the deafs' brain showed larger functional backbone-shifts in node strength compared to controls. In the alpha band this shift in network strength differed among deaf participants and depended on type of deafness: congenital, prelingual or post-lingual deafness. In addition, a correlation was found between functional backbone characteristics and experience of sign language. Our study revealed more insights in functional network reorganization specifically due to prolonged lack of auditory input, but might also be helpful for sensory deprivation and cross-modal plasticity in general. Global cortical network reorganization in deaf people supports the plastic capacities of the young brain. The differences between type of deafness stresses that etiology affects functional . CC-BY-NC 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/335414 doi: bioRxiv preprint first posted online 3 reorganization, whereas the association between network organization and acquired sign language experience reflects ongoing brain adaptation in people with hearing disabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.