Bone segmentation from CT images is a task that has been worked on for decades. It is an important ingredient to several diagnostics or treatment planning approaches and relevant to various diseases. As high-quality manual and semi-automatic bone segmentation is very time-consuming, a reliable and fully automatic approach would be of great interest in many scenarios. In this publication, we propose a U-Net inspired architecture to address the task using Deep Learning. We evaluated the approach on whole-body CT scans of patients suffering from multiple myeloma. As the disease decomposes the bone, an accurate segmentation is of utmost importance for the evaluation of bone density, disease staging and localization of focal lesions. The method was evaluated on an in-house data-set of 6000 2D image slices taken from 15 whole-body CT scans, achieving a dice score of 0.96 and an IOU of 0.94.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.