BackgroundInsects have been among the most widely used model systems for studying the control of locomotion by nervous systems. In Drosophila, we implemented a simple test for locomotion: in Buridan's paradigm, flies walk back and forth between two inaccessible visual targets [1]. Until today, the lack of easily accessible tools for tracking the fly position and analyzing its trajectory has probably contributed to the slow acceptance of Buridan's paradigm.Methodology/Principal FindingsWe present here a package of open source software designed to track a single animal walking in a homogenous environment (Buritrack) and to analyze its trajectory. The Centroid Trajectory Analysis (CeTrAn) software is coded in the open source statistics project R. It extracts eleven metrics and includes correlation analyses and a Principal Components Analysis (PCA). It was designed to be easily customized to personal requirements. In combination with inexpensive hardware, these tools can readily be used for teaching and research purposes. We demonstrate the capabilities of our package by measuring the locomotor behavior of adult Drosophila melanogaster (whose wings were clipped), either in the presence or in the absence of visual targets, and comparing the latter to different computer-generated data. The analysis of the trajectories confirms that flies are centrophobic and shows that inaccessible visual targets can alter the orientation of the flies without changing their overall patterns of activity.Conclusions/SignificanceUsing computer generated data, the analysis software was tested, and chance values for some metrics (as well as chance value for their correlation) were set. Our results prompt the hypothesis that fixation behavior is observed only if negative phototaxis can overcome the propensity of the flies to avoid the center of the platform. Together with our companion paper, we provide new tools to promote Open Science as well as the collection and analysis of digital behavioral data.
Although a variety of basic insect behaviours have inspired successful robot implementations, more complex capabilities in these 'simple' animals are often overlooked. By reviewing the general architecture of their nervous systems, we gain insight into how they are able to integrate behaviours, perform pattern recognition, context-dependent learning, and combine many sensory inputs in tasks such as navigation. We review in particular what is known about two specific 'higher' areas in the insect brain, the mushroom bodies and the central complex, and how they are involved in controlling an insect's behaviour. While much of the functional interpretation of this information is still speculative, it nevertheless suggests some promising new approaches to obtaining adaptive behaviour in robots.
Certain insect species are known to relocate nest or food sites using landmarks, but the generality of this capability among insects, and whether insect place memory can be used in novel task settings, is not known. We tested the ability of crickets to use surrounding visual cues to relocate an invisible target in an analogue of the Morris water maze, a standard paradigm for spatial memory tests on rodents. Adult female Gryllus bimaculatus were released into an arena with a floor heated to an aversive temperature, with one hidden cool spot. Over 10 trials, the time taken to find the cool spot decreased significantly. The best performance was obtained when a natural scene was provided on the arena walls. Animals can relocate the position from novel starting points. When the scene is rotated, they preferentially approach the fictive target position corresponding to the rotation. We note that this navigational capability does not necessarily imply the animal has an internal spatial representation.
Path integration is an important navigation strategy in many animal species. We use a genetic algorithm to evolve a novel neural model of path integration, based on input from cells that encode the heading of the agent in a manner comparable to the polarization-sensitive interneurons found in insects. The home vector is encoded as a population code across a circular array of cells that integrate this input. This code can be used to control return to the home position. We demonstrate the capabilities of the network under noisy conditions in simulation and on a robot.
The pathways for olfactory learning in the fruitfly Drosophila have been extensively investigated, with mounting evidence that that the mushroom body is the site of the olfactory associative memory trace (Heisenberg, Nature 4:266-275, 2003; Gerber et al., Curr Opin Neurobiol 14:737-744, 2004). Heisenberg's description of the mushroom body as an associative learning device is a testable hypothesis that relates the mushroom body's function to its neural structure and input and output pathways. Here, we formalise a relatively complete computational model of the network interactions in the neural circuitry of the insect antennal lobe and mushroom body, to investigate their role in olfactory learning, and specifically, how this might support learning of complex (non-elemental; Giurfa, Curr Opin Neuroethol 13:726-735, 2003) discriminations involving compound stimuli. We find that the circuit is able to learn all tested non-elemental paradigms. This does not crucially depend on the number of Kenyon cells but rather on the connection strength of projection neurons to Kenyon cells, such that the Kenyon cells require a certain number of coincident inputs to fire. As a consequence, the encoding in the mushroom body resembles a unique cue or configural representation of compound stimuli (Pearce, Psychol Rev 101:587-607, 1994). Learning of some conditions, particularly negative patterning, is strongly affected by the assumption of normalisation effects occurring at the level of the antennal lobe. Surprisingly, the learning capacity of this circuit, which is a simplification of the actual circuitry in the fly, seems to be greater than the capacity expressed by the fly in shock-odour association experiments (Young et al. 2010).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.