A n important strategic phase in the planning process of a railway operator is the development of a line plan, i.e., a set of routes (paths) in a network of tracks, operated at a given hourly frequency. We consider a model formulation of the line-planning problem where total operating costs are to be minimized. This model is solved with a branch-and-cut approach, for which we develop a variety of valid inequalities and reduction methods. A computational study of five real-life instances based on examples from Netherlands Railways (NS) is included.
People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Polarization-division multiplexed (PDM) transmission based on the nonlinear Fourier transform (NFT) is proposed for optical fiber communication. The NFT algorithms are generalized from the scalar nonlinear Schrödinger equation for one polarization to the Manakov system for two polarizations. The transmission performance of the PDM nonlinear frequency-division multiplexing (NFDM) and PDM orthogonal frequency-division multiplexing (OFDM) are determined. It is shown that the transmission performance in terms of Q-factor is approximately the same in PDM-NFDM and single polarization NFDM at twice the data rate and that the polarization-mode dispersion does not seriously degrade system performance. Compared with PDM-OFDM, PDM-NFDM achieves a Q-factor gain of 6.4 dB. The theory can be generalized to multi-mode fibers in the strong coupling regime, paving the way for the application of the NFT to address the nonlinear effects in space-division multiplexing.
The integrable nonlinear Schrödinger equation (NLSE) is a fundamental model of nonlinear science which also has important consequences in engineering. The powerful framework of the periodic inverse scattering transform (IST) provides a description of the nonlinear phenomena modulational instability and Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence in terms of exact solutions. It associates the complex nonlinear dynamics with invariant nonlinear spectral degrees of freedom that may be used to encode information. While optical fiber is an ideal testing ground of its predictions, maintaining integrability over sufficiently long distances to observe recurrence, as well as synthesizing and measuring the field in both amplitude and phase on the picosecond timescales of typical experiments is challenging. Here we report on the experimental realization of FPUT recurrence in terms of an exact space-time-periodic solution of the integrable NLSE in a testbed for optical communication experiments. The complex-valued initial condition is constructed by means of the finite-gap integration method, modulated onto the optical carrier driven by an arbitrary waveform generator and launched into a recirculating fiber loop with periodic amplification. The measurement with an intradyne coherent receiver after a predetermined number of revolutions provides a non-invasive full-field characterization of the space-time dynamics. The recurrent space-time evolution is in close agreement with theoretical predictions over a distance of 9000 km. Nonlinear spectral analysis reveals an invariant nonlinear spectrum. The space-time scale exceeds that of previous experiments on FPUT recurrence in fiber by three orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.