We present experiments on slow granular flows in a modified (split-bottomed) Couette geometry in which wide and tunable shear zones are created away from the sidewalls. For increasing layer heights, the zones grow wider (apparently without bound) and evolve towards the inner cylinder according to a simple, particle-independent scaling law. After rescaling, the velocity profiles across the zones fall onto a universal master curve given by an error function. We study the shear zones also inside the material as a function of both their local height and the total layer height.
Abstract. -We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique. We model the visco-elasticity of polymer liquids by introducing a finite fraction of dumbbells in the standard DPD fluid. The stretching and tumbling statistics of these dumbbells is in agreement with what is known for isolated polymers in shear flows. At the same time, the model exhibits behaviour reminiscent of drag reduction in the turbulent state: as the polymer fraction increases, the onset of turbulence in plane Couette flow is pushed to higher Reynolds numbers. The method opens up the possibility to model nontrivial rheological conditions with ensuing coarse grained polymer statistics.
We introduce and demonstrate a new approach to inference in expressive probabilistic programming languages based on particle Markov chain Monte Carlo. Our approach is simple to implement and easy to parallelize. It applies to Turing-complete probabilistic programming languages and supports accurate inference in models that make use of complex control flow, including stochastic recursion. It also includes primitives from Bayesian nonparametric statistics. Our experiments show that this approach can be more efficient than previously introduced single-site Metropolis-Hastings methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.