This paper applies the Directed Technical Change (DTC) framework to study improvements in the efficiency of energy use. We present a theoretical model which (1) shows that the demand for energy is shifted down by innovations in energy intensive sectors and (2) highlights the drivers of innovative activity in these sectors. We then estimate the model through an empirical analysis of patent and energy data. Our contribution is fivefold. First, our model shows that under very general assumptions information about energy expenditures, knowledge spillovers and the parameters governing the R&D process are sufficient to predict the R&D effort in efficiencyimproving technologies. Second, we pin down the conditions for a log-linear relation between energy expenditure and the R&D effort. Third, the calibration of the model provides clear evidence that the value of the energy market as well as international and inter-temporal spillovers play a significant role in determining the level of innovative activity. Fourth, we show that innovative activity in energy intensive sectors shifts down the (Marshallian) demand for energy. Finally, we show that due to the streamlined modelling framework we adopt, the point estimates from our regression can potentially be used to calibrate any model of DTC in the context of energy consumption.JEL classifications: O31, O33, Q43
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.