Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails.
Grifola frondosa is an edible mushroom currently available in Taiwan. Ethanolic, cold-water and hot-water extracts were prepared and their antioxidant properties were investigated. At 1 mg/mL, G. frondosa T1 and T2 cold-water extracts showed high reducing powers of 1.02 and 0.50, respectively. Chelating abilities on ferrous ions of G. frondosa T1 and T2 were higher for cold-water extracts than for ethanolic and hot-water extracts. For the scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, G. frondosa T1 and T2 extracts were effective in the following order: ethanolic > hot-water > cold-water. The G. frondosa hot-water extract showed high scavenging ability on superoxide anions. Total phenols, flavonoids, ascorbic acid and α-tocopherol are the major antioxidant components found in the various G. frondosa extracts. Based on EC50 values (<20 mg/mL) obtained, the various extracts from G. frondosa investigated in this study display potent antioxidative properties.
BackgroundNew strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails.Methodology/Principal FindingsHere we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD) markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected) is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected). Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1) with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated.Conclusions/SignificanceThe loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation.
Rabbits were immunized with two synthetic peptides based on hydrophilic regions of selenoprotein W from rat muscle. The resulting polyclonal antibodies were used in Western blots to determine the compartmentation and tissue distribution of selenoprotein W, and to determine the influence of selenium on the levels of this selenoprotein in rat muscle. Selenoprotein W exists mainly in cytosol, but very small amounts were associated with membranes. Western blots revealed selenoprotein W in muscle, spleen, testis, and brain of rats. Rats were fed diets of either no addition of selenium (0 ppm Se) or additions of 0.1 and 4.0 mg selenium/g (0.1 ppm Se and 4.0 ppm Se) diet for 6 wk. Selenoprotein W was undetectable in skeletal muscle of rats fed the basal diet, detectable in those fed 0.1 ppm selenium in the diet, and much higher in muscle from rats fed 4 ppm selenium diet. In a species comparison, Western blots indicated the presence of selenoprotein W in muscle of rabbits, sheep, and cattle.
Because selenium increases the levels of other selenoproteins, the influence of this element on selenoprotein W was examined in wether sheep fed either a low selenium diet (0.02 mg/kg) or the same diet supplemented with 3 mg selenium as selenite per kilogram diet. Muscle biopsies were taken initially and at 3.5, 7.0 and 10.5 wk. The sheep were killed after the last muscle biopsy and samples from nine tissues were taken. Selenoprotein W was determined in tissues by Western blots with a polyclonal antibody against a synthetic peptide based on the protein sequence of the homologous rat selenoprotein W. In supplemented sheep, muscle selenoprotein W was significantly increased over initial levels (P < 0.05) at 7 wk and afterwards, whereas in sheep consuming the low selenium diet, muscle selenoprotein W levels declined significantly (P < 0.05) after 10.5 wk. This selenoprotein was found in various amounts in all tissues examined. The highest levels of selenoprotein W were found in skeletal muscles and heart and the lowest was found in liver. Except for selenoprotein W in brain, the concentrations of selenoprotein W, selenium and glutathione peroxidase activity were significantly higher (P < 0.05) in all tissues from supplemented sheep than in those from unsupplemented sheep. The selenoprotein W levels in brains of the two groups were not significantly different. Thus, selenoprotein W levels in all tissues of sheep except the brain are sensitive to selenium status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.