Abstract. This paper presents a first step of our research on designing an effective and efficient GP-based method for symbolic regression. First, we propose three extensions of the standard Single Node GP, namely (1) a selection strategy for choosing nodes to be mutated based on depth and performance of the nodes, (2) operators for placing a compact version of the best-performing graph to the beginning and to the end of the population, respectively, and (3) a local search strategy with multiple mutations applied in each iteration. All the proposed modifications have been experimentally evaluated on five symbolic regression benchmarks and compared with standard GP and SNGP. The achieved results are promising showing the potential of the proposed modifications to improve the performance of the SNGP algorithm. We then propose two variants of hybrid SNGP utilizing a linear regression technique, LASSO, to improve its performance. The proposed algorithms have been compared to the state-of-the-art symbolic regression methods that also make use of the linear regression techniques on four real-world benchmarks. The results show the hybrid SNGP algorithms are at least competitive with or better than the compared methods.
Genetic Programming has been very successful in solving a large area of problems but its use as a machine learning algorithm has been limited so far. One of the reasons is the problem of overfitting which cannot be solved or suppresed as easily as in more traditional approaches. Another problem, closely related to overfitting, is the selection of the final model from the population.In this article we present our research that addresses both problems: overfitting and model selection. We compare several ways of dealing with ovefitting, based on Random Sampling Technique (RST) and on using a validation set, all with an emphasis on model selection. We subject each approach to a thorough testing on artificial and real-world datasets and compare them with the standard approach, which uses the full training data, as a baseline.
Reinforcement learning algorithms can be used to optimally solve dynamic decision-making and control problems. With continuous-valued state and input variables, reinforcement learning algorithms must rely on function approximators to represent the value function and policy mappings. Commonly used numerical approximators, such as neural networks or basis function expansions, have two main drawbacks: they are black-box models offering no insight in the mappings learned, and they require significant trial and error tuning of their meta-parameters. In this paper, we propose a new approach to constructing smooth value functions in the form of analytic expressions by means of symbolic regression. We introduce three off-line methods for finding value functions based on a state transition model: symbolic value iteration, symbolic policy iteration, and a direct solution of the Bellman equation. The methods are illustrated on four nonlinear control problems: velocity control under friction, one-link and two-link pendulum swing-up, and magnetic manipulation. The results show that the value functions not only yield well-performing policies, but also are compact, mathematically tractable and easy to plug into other algorithms. This makes them potentially suitable for further analysis of the closed-loop system. A comparison with an alternative approach using neural networks shows that our method outperforms the neural network-based one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.