Summary
Recent studies have highlighted a direct, fast transfer of recently assimilated C from the tree canopy to the soil. However, the effect of environmental changes on this flux remains largely unknown.
We investigated the effects of drought on the translocation of recently assimilated C, by pulse‐labelling 1.5‐yr‐old beech tree mesocosms with 13CO2. 13C signatures were then measured daily for 1 wk in leaves, twigs, coarse and fine root water‐soluble and total organic matter, phloem organic matter, soil microbial biomass and soil CO2 efflux.
Drought reduced C assimilation and doubled the residence time of recently assimilated C in leaf biomass. In phloem organic matter, the 13C label peaked immediately after labelling then decayed exponentially in the control treatment, while under drought it peaked 4 d after labelling. In soil microbial biomass, the label peaked 1 d after labelling in the control treatment, whereas under drought no peak was measured. Two days after labelling, drought decreased the contribution of recently assimilated C to soil CO2 efflux by 33%.
Our study showed that drought reduced the coupling between canopy photosynthesis and belowground processes. This will probably affect soil biogeochemical cycling, with potential consequences including slower soil nitrogen cycling and changes in C‐sequestration potential under future climate conditions.
Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.DOI:
http://dx.doi.org/10.7554/eLife.28360.001
Orientation of spindles and cell division planes during development of many species ensures that correct cell-cell contacts are established, which is vital for proper tissue formation. This is a tightly regulated process involving a complex interplay of various signals. The molecular mechanisms underlying several of these pathways are still incompletely understood. Here, we identify the signaling cascade of the C. elegans latrophilin homolog LAT-1, an essential player in the coordination of anterior-posterior spindle orientation during the fourth round of embryonic cell division. We show that the receptor mediates a G protein-signaling pathway revealing that G-protein signaling in oriented cell division is not solely GPCR-independent. Genetic analyses showed that through the interaction with a Gs protein LAT-1 elevates intracellular cyclic AMP (cAMP) levels in the C. elegans embryo. Stimulation of this G-protein cascade in lat-1 null mutant nematodes is sufficient to orient spindles and cell division planes in the embryo in the correct direction. Finally, we demonstrate that LAT-1 is activated by an intramolecular agonist to trigger this cascade. Our data support a model in which a novel, GPCR-dependent G protein-signaling cascade mediated by LAT-1 controls alignment of cell division planes in an anterior-posterior direction via a metabotropic Gs-protein/adenylyl cyclase pathway by regulating intracellular cAMP levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.