One of the key requirements for technological systems that are used to secure independent housing for seniors in their home environment is monitoring of daily living activities (ADL), their classification, and recognition of routine daily patterns and habits of seniors in Smart Home Care (SHC). To monitor daily living activities, the use of a temperature, CO 2 , humidity sensors, and microphones are described in experiments in this study. The first part of the paper describes the use of CO 2 concentration measurement for detecting and monitoring room´s occupancy in SHC. In second part focuses this paper on the proposal of an implementation of Artificial Neural Network based on the Levenberg-Marquardt algorithm (LMA) for the detection of human presence in a room of SHC with the use of predictive calculation of CO 2 concentrations from obtained measurements of temperature (indoor, outdoor) T i , T o and relative air humidity rH. Based on the long-term monitoring (1 month) of operational and technical functions (unregulated, uncontrolled) in an experimental Smart Home (SH), LMA was trained through the data picked up by the sensors of CO 2 , T and rH with the aim to indirectly predict CO 2 leading to the elimination of CO 2 sensor from the measurement process. Within the realized experiment, input parameters of the neuronal network and the number of neurons for LMA were optimized on the basis of calculated values of Root Mean Squared Error, the correlative coefficient (R) and the length of the measured training time ANN. With the use of the trained network ANN, we realized a strictly controlled short-term (11 h) experiment without the use of CO2 sensor. Experimental results verified high method accuracy (>95%) within the short-term and long-term experiments for learned ANN (1.6.2015ANN (1.6. -30.6.2015. For learned ANN (1.2.2014ANN (1.2. -27.2.2014) was verified worse method accuracy (>60%). The original contribution is a verification of a low-cost method for the detection of human presence in the real operating environment of SHC. In the third part of the paper is described the practical implementation of voice control of operating technical functions by the KNX technology in SHC by means of the in-house developed application HESTIA, intended for both the desktop system version and the mobile version of the Windows 10 operating system for mobile phones. The resultant application can be configured for any building equipped with the KNX bus system. Voice control implementation is an in-house solution, no third-party software is used here. Utilization of the voice communication application in SHC was proven on the experimental basis with the combination of measurement CO 2 for ADL monitoring in SHC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.