Abstract. Pokhara (ca. 850 m a.s.l.), Nepal's second-largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past 3 decades. Construction materials are in high demand in rapidly expanding built-up areas, and several informal settlements cater to unregulated sand and gravel mining in the Pokhara Valley's main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 a sudden flood caused >70 fatalities and intense damage along this river and rekindled concerns about flood risk management. We estimate the flow dynamics and inundation depths of flood scenarios using the hydrodynamic model HEC-RAS (Hydrologic Engineering Center’s River Analysis System). We simulate the potential impacts of peak discharges from 1000 to 10 000 m3 s−1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past 2 decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between 3- and 20-fold, thus likely raising local flood exposure well beyond changes in flood hazard. Besides these drastic local changes, about 1 % of Pokhara's built-up urban area and essential rural road network is in the highest-hazard zones highlighted by our flood simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed.
In May 2012, a sediment‐laden flood along the Seti Khola (= river) caused 72 fatalities and widespread devastation for > 40 km in Pokhara, Nepal's second largest city. The flood was the terminal phase of a hazard cascade that likely began with a major rock‐slope collapse in the Annapurna Massif upstream, followed by intermittent ponding of meltwater and subsequent outburst flooding. Similar hazard cascades have been reported in other mountain belts, but peak discharges for these events have rarely been quantified. We use two hydrodynamic models to simulate the extent and geomorphic impacts of the 2012 flood and attempt to reconstruct the likely water discharge linked to even larger medieval sediment pulses. The latter are reported to have deposited several cubic kilometres of sediment in the Pokhara Valley. The process behind these sediment pulses is debated. We traced evidence of aggradation along the Seti Khola during field surveys and from RapidEye satellite images. We use two steady‐state flood models, HEC‐RAS and ANUGA, and high‐resolution topographic data, to constrain the initial flood discharge with the lowest mismatch between observed and predicted flood extents. We explore the physically plausible range of simplified flood scenarios, from meteorological (1000 m3 s−1) to cataclysmic outburst floods (600,000 m3 s−1). We find that the 2012 flood most likely had a peak discharge of 3700 m3 s−1 in the upper Seti Khola and attenuated to 500 m3 s−1 when arriving in Pokhara city. Simulations of larger outburst floods produce extensive backwater effects in tributary valleys that match with the locations of upstream‐dipping medieval‐age slackwater sediments in several tributaries of the Seti Khola. Our findings are consistent with the notion that the medieval sediment pulses were linked to outburst floods with peak discharges of >50,000 m3 s−1, though discharge may have been an order of magnitude higher.
Abstract. Pokhara (c. 850 m a.s.l.), Nepal’s second largest city, lies at the foot of the Higher Himalayas and has more than tripled its population in the past three decades. Rapidly expanding built-up areas are high in demand for construction materials and several informal settlements cater to unregulated sand and gravel mining in the Pokhara valley’s main river, the Seti Khola. This river is fed by the Sabche glacier below Annapurna III (7,555 m a.s.l.), some 35 km upstream of the city, and traverses one of the steepest topographic gradients in the Himalayas. In May 2012 an outburst flood caused > 70 fatalities and intense damage along this river and rekindled concerns about flood-risk management. We estimate the flow dynamics and inundation depths of outburst flood scenarios using the hydrodynamic model HEC-RAS. We simulate the potential impacts of peak discharges from 1,000 to 10,000 m3 s-1 on land cover based on high-resolution Maxar satellite imagery and OpenStreetMap data (buildings and road network). We also trace the dynamics of two informal settlements near Kaseri and Yamdi with high potential flood impact from RapidEye, PlanetScope, and Google Earth imagery of the past two decades. Our hydrodynamic simulations highlight several sites of potential hydraulic ponding that would largely affect these informal settlements and sites of sand and gravel mining. These built-up areas grew between three and twentyfold, thus likely raising local flood risk well beyond changes in outburst hazard. Besides these drastic local changes, about 1 % of Pokhara’s urban built-up area and essential rural road network is in the highest hazard zones highlighted by our outburst simulations. Our results stress the need to adapt early-warning strategies for locally differing hydrological and geomorphic conditions in this rapidly growing urban watershed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.