Protein p21(Cip1/Waf1) is a cyclin-dependent kinase inhibitor, which is important in the response of cells to genotoxic stress and a major transcriptional target of p53 protein. Based on the localization, p21(Cip1/Waf1) protein executes various functions in the cell. In the nucleus p21(Cip1/Waf1) binds to and inhibits the activity of cyclin dependent kinases Cdk1 and Cdk2 and blocks the transition from G1 phase into S phase or from G2 phase into mitosis after DNA damage. This enables the repair of damaged DNA. p21(Cip1/Waf1) was also found as an important protein for the induction of replication senescence as well as stress-induced premature senescence. In the cytoplasm, p21(Cip1/Waf1) protein has an anti-apoptotic effect. It is able to bind to and inhibit caspase 3, as well as the apoptotic kinases ASK1 and JNK. The function of p21(Cip1/Waf1) in response to a DNA damage probably depends on the extent of the damage. In the case of low-level DNA damage, the expression of p21(Cip1/Waf1) is increased, it induces cell cycle arrest, and performs also anti-apoptotic activities. However, after extensive DNA damage the amount of p21(Cip1/Waf1) protein is decreased and the cell undergoes apoptosis. Dual function of p21(Cip1/Waf1) was also observed in cancerogenesis. On the one hand, p21(Cip1/Waf1) acts as a tumor suppressor; on the other hand it prevents apoptosis and acts as an oncogene. Better understanding of the role of p21(Cip1/Waf1) in various conditions would help to develop better cancer-treatment strategies.
Mesenchymal stem cells isolated from bone marrow and periodontal ligament respond to ionizing radiation by induction of stress-induced premature senescence without apparent differences in their radiation response.
Adult human dental pulp contains stem cells (DPSCs) that are capable of differentiation into osteoblasts, odontoblasts, adipocytes, and neuronal-like cells. Because these cells have potential use in tissue regeneration, herein we characterized the response of DPSC lines to ionizing radiation (IR). These DPSC lines have been developed from the extracted molars of healthy donors. DPSCs were cultivated in a unique media supplemented with epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). Since tissue homeostasis depends on a precise balance among cell proliferation, senescence, and cell death, we explored the effects of IR (2-20 Gy) on the proliferative activity of DPSCs and the molecular pathways involved. Even the highest dose used (20 Gy) did not induce DPSC apoptosis. After irradiation with doses of 6 and 20 Gy, DPSCs accumulated in the G2 phase of the cell cycle. DPSCs responded to IR (20 Gy) with senescence detected as SA-β-galactosidase positivity, beginning on the third day after irradiation. Twenty-four hours after irradiation, p53 and its serine 15 and 392 phosphorylated forms were detected. At this time, p21 (WAF1) was induced. Increases in protein p16 were observed from the third day following irradiation and continued till the end of the examination (Day 13). We conclude that DPSCs respond to IR-induced damage by permanent cell cycle arrest in the G2 phase and by stress-induced premature senescence.
In recent years, α-tomatine has been studied for its anticancer activity. In the present study, we focused on the cytotoxic effect of α-tomatine in the MCF-7 human breast adenocarcinoma cell line, its mechanism of action, biotransformation and stability in the culture medium. We observed an inhibition of cell proliferation and viability at concentrations of 6 and 9 μM but then a recovery of cells occurred. The recovery was not caused by the biotransformation of α-tomatine in MCF-7 cells, but by a substantial decrease in the concentration of α-tomatine in the culture medium due to its binding with cholesterol. Regarding the mechanism of action of α-tomatine, we observed no DNA damage, no changes in the levels of the proteins p53 and p21WAF1/Cip1, and no apoptosis (neither activated caspase-8 and -9, nor sub-G1 peak, or morphological signs). We found a loss of ATP in α-tomatine-treated cells. These results support the conclusion that α-tomatine does not induce apoptosis in the MCF-7 cell line.
Dental pulp stem cells had a greater genotoxic stress response to cisplatin compared to HDFs. Cisplatin in higher concentrations triggered activation of MAPK and apoptosis in DPSCs but not in HDFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.