In order to provide a more detailed view on the structure–antimycobacterial activity relationship (SAR) of phenylcarbamic acid derivatives containing two centers of protonation, 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(dipropylammonio)propyl]pyrrolidinium oxalates (1a–d)/dichlorides (1e–h) as well as 1-[2-[({[2-/3-(alkoxy)phenyl]amino}carbonyl)oxy]-3-(di-propylammonio)propyl]azepanium oxalates (1i–l)/dichlorides (1m–p; alkoxy = butoxy to heptyloxy) were physicochemically characterized by estimation of their surface tension (γ; Traube’s stalagmometric method), electronic features (log ε; UV/Vis spectrophotometry) and lipophilic properties (log kw; isocratic RP-HPLC) as well. The experimental log kw dataset was studied together with computational logarithms of partition coefficients (log P) generated by various methods based mainly on atomic or combined atomic and fragmental principles. Similarities and differences between the experimental and in silico lipophilicity descriptors were analyzed by unscaled principal component analysis (PCA). The in vitro activity of compounds 1a–p was inspected against Mycobacterium tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794, respectively), M. tuberculosis H37Ra ATCC 25177, M. kansasii CNCTC My 235/80 (identical with ATCC 12478), the M. kansasii 6509/96 clinical isolate, M. kansasii DSM 44162, M. avium CNCTC My 330/80 (identical with ATCC 25291), M. smegmatis ATCC 700084 and M. marinum CAMP 5644, respectively. In vitro susceptibility of the mycobacteria to reference drugs isoniazid, ethambutol, ofloxacin or ciprofloxacin was tested as well. A very unique aspect of the research was that many compounds from the set 1a–p were highly efficient almost against all tested mycobacteria. The most promising derivatives showed MIC values varied from 1.9 μM to 8 μM, which were lower compared to those of used standards, especially if concerning ability to fight M. tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 or M. avium CNCTC My 330/80. Current in vitro biological assays and systematic SAR studies based on PCA approach as well as fitting procedures, which were supported by relevant statistical descriptors, proved that the compounds 1a–p represented a very promising molecular framework for development of ‘non-traditional’ but effective antimycobacterial agents.
In an effort to comprehensively characterize an antioxidant profile of 2-alkoxyphenylcarbamic acid-based compounds containing a 4´-(substituted phenyl)piperazin-1´-yl fragment, they were in vitro screened in the 2,2´-azino-bis(3-ethylbenzothiazoline-6--sulfonic acid) derived radical cation (ABTS •+ ) and ferric reducing antioxidant power (FRAP) assay using the UV/VIS spectrophotometry. The ABTS•+ scavenging (reducing) potential of 1-[3-(2-methoxyphenylcarbamoyl)oxy-2-hydroxypropyl]-4-(4--fluorophenyl)piperazin-1-ium chloride was found to be the most promising and it was comparable to the efficiency of the carvedilol reference drug. Moreover, that 4´-fluoro group-containing compound was regarded as more active than the atenolol standard. When testing the molecules´ power to reduce the ferric 2,4,6-tris (2-pyridyl)-s-triazine complex [Fe(III)(TPTZ) 2 ] 3+ , the most prospective was 1-[3-(2-ethoxyphenylcarbamoyl)oxy-2--hydroxypropyl]-4-(4-fluorophenyl)piperazin-1-ium chloride. On the other hand, its Fe 3+ reducing power was lower compared to both standards carvedilol and atenolol. The study discussed structure-antioxidant properties relationships considering electronic, steric and lipophilic features.
This research focused on a three-step synthesis, analytical, physicochemical, and biological evaluation of hybrid molecules 6a–g, containing a lipophilic 3-trifluoromethylphenyl moiety, polar carbamoyloxy bridge, 2-hydroxypropan-1,3-diyl chain and 4-(substituted phenyl)-/4-diphenylmethylpiperazin-1-ium-1-yl fragment. The estimation of analytical and physicochemical descriptors (m/zmeasured via HPLC-UV/HR-MS, log ε2 (Ch–T) from UV/Vis spectrophotometry and log kw via RP-HPLC) as well as in vitro antimycobacterial and cytotoxic screening of given compounds were carried out (i.e., determination of MIC and IC50 values). These highly lipophilic molecules (log kw = 4.1170–5.2184) were tested against Mycobacterium tuberculosis H37Ra ATCC 25177 (Mtb H37Ra), M. kansasii DSM 44162 (MK), M. smegmatis ATCC 700084 (MS), and M. marinum CAMP 5644 (MM). The impact of the 6a–g set on the viability of human liver hepatocellular carcinoma (HepG2) cells was also investigated. 1-[2-Hydroxypropyl-{(3-trifluoromethyl)- phenyl}carbamoyloxy]-4-(3,4-dichlorophenyl)piperazin-1-ium chloride (6e) and 1-[2-hydroxy- propyl-{(3-trifluoromethyl)phenyl}carbamoyloxy]-4-(4-diphenylmethyl)piperazin-1-ium chloride (6g) most effectively inhibited the growth of Mtb H37Ra (MIC < 3.80 μM). The substance 6g also showed interesting activity against MM (MIC = 8.09 μM). All obtained data served as input values for structure-activity relationship evaluations using statistical principal component analysis. In fact, the toxicity of both 6e (IC50 = 29.39 μM) and 6g (IC50 = 22.18 μM) in HepG2 cells as well as selectivity index (SI) values (SI < 10.00) prevented to consider these promising antimycobacterials safe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.