The lack of classical lymph vessels within brain tissue complicates immune surveillance of the CNS, and therefore, cellular emigration out of the CNS parenchyma requires alternate pathways. Whereas invasion of blood-derived mononuclear cells and their transformation into ramified, microglia-like cells in areas of axonal degeneration across an intact BBB have been demonstrated, it still remained unclear whether these cells reside permanently, undergo apoptosis, or leave the brain to present antigen in lymphoid organs. With the use of ECL of mice and injection of GFP-expressing monocytes, we followed the appearance of injected cells in spleen and LNs and the migratory pathways in whole-head histological sections. Monocytes migrated from the lesion site to deep CLNs, peaking in number at Day 7, but they were virtually absent in spleen and in superficial CLNs and inguinal LNs until Day 21 after lesion/injection. In whole-head sections, GFP monocytes were found attached to the olfactory nerves and located within the nasal mucosa at 48 hpi. Thus, monocytes are capable of migrating from lesioned brain areas to deep CLNs and use the cribriform plate as an exit route.
Studies of axonal outgrowth and regeneration after spinal cord injury are hampered by the complexity of the events involved. Here, we present a simple and improved in vitro approach to investigate outgrowth, regeneration of the corticospinal tract, and intrinsic parenchymal responses. We prepared organotypic co-cultures using explants from the motor cortex of postnatal donor mice ubiquitously expressing green fluorescent protein and cervical spinal cord from wild type pups of the same age. Our data show that: a) motor-cortical outgrowth is already detectable after 1 d in culture and is source specific; b) treatment with neurotrophin-3 and C3 transferase from Clostridium botulinum significantly enhances axonal outgrowth during the course of cultivation; c) outgrowing axons form synaptic connections, as demonstrated by immunohistochemistry and calcium imaging; and d) migrating cells of motor-cortical origin can be reliably identified without previous tracing and are mostly neural precursors that survive and mature in the spinal cord parenchyma. Thus, our model is suitable for screening for candidate substances that enhance outgrowth and regeneration of the corticospinal tract and for studying the role of endogenous neural precursors after lesion induction.
Recently, we monitored green fluorescent protein (GFP)-expressing monocytes after injection at the entorhinal cortex lesion (ECL) site in mice. We followed their migration out of the central nervous system (CNS) along olfactory nerve fibers penetrating the lamina cribrosa, within the nasal mucosa, and their subsequent appearance within the deep cervical lymph nodes (CLN), with numbers peaking at day 7. This is the same route activated T cells use for reaching the CLN, as we have shown before. Interestingly, GFP cells injected into the brain and subsequently found in the CLN exhibited ramified morphologies, which are typical of microglia and dendritic cells. To gain more insight into immunity and regeneration within the CNS we want to monitor injected monocytes using magnetic resonance imaging (MRI) after labeling with very small superparamagnetic iron oxide particles (VSOP). Due to their small size, nanoparticles have huge potential for magnetic labeling of different cell populations and their MRI tracking in vivo. So far we have verified that incubation with VSOP particles does not alter their migration pattern after ECL.
We present a novel highly efficient protocol to magnetically label T cells applying electrostatically stabilized very small superparamagnetic iron oxide particles (VSOP). Our long-term aim is to use magnetic resonance imaging (MRI) to investigate T cell dynamics in vivo during the course of neuroinflammatory disorders such as experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Encephalitogenic T cells were co-incubated with VSOP, or with protamine-complexed VSOP (VProt), respectively, at different conditions, optimizing concentrations and incubation times. Labeling efficacy was determined by atomic absorption spectrometry as well as histologically, and evaluated on a 7 T MR system. Furthermore, we investigated possible alterations of T cell physiology caused by the labeling procedure. T cell co-incubation with VSOP resulted in an efficient cellular iron uptake. T2 times of labeled cells dropped significantly, resulting in prominent hypointensity on T2*-weighted scans. Optimal labeling efficacy was achieved by VProt (1 mM Fe/ml, 8 h incubation; T2 time shortening of ∼80% compared to untreated cells). Although VSOP promoted T cell proliferation and altered the ratio of T cell subpopulations toward a CD4+ phenotype, no effects on CD4 T cell proliferation or phenotypic stability were observed by labeling in vitro differentiated Th17 cells with VProt. Yet, high concentrations of intracellular iron oxide might induce alterations in T cell function, which should be considered in cell tagging studies. Moreover, we demonstrated that labeling of encephalitogenic T cells did not affect pathogenicity; labeled T cells were still capable of inducing EAE in susceptible recipient mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.