The value of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in deriving novel diagnostic and therapeutic input has been subject to recent debate. This study is the first to report a disseminated distribution of plaques including cranial nerves, prior to or at early stages of disease in murine adoptive transfer EAE, irrespective of the development of clinical symptoms. We induced EAE by adoptive proteolipid protein-specific T-cell transfer in 26 female SJL/J mice, and applied high-field-strength magnetic resonance imaging (MRI) scans longitudinally, assessing blood-brain barrier (BBB) disruption by gadopentate dimeglumine enhancement. We visualized inflammatory nerve injury by gadofluorine M accumulation, and phagocytic cells in inflamed tissue by very small anionic iron oxide particles (VSOP-C184). MRI was correlated with immunohistological sections. In this study, we discovered very early BBB breakdown of white and grey brain matter in 25 mice; one mouse developed exclusively spinal cord inflammation. Widely disseminated contrast-enhancing lesions preceded the onset of disease in 10 animals. Such lesions were present despite the absence of any clinical disease formation in four mice, and coincided with the first detectable symptoms in others. Cranial nerves, predominantly the optic and trigeminal nerves, showed signal intensity changes in nuclei and fascicles of 14 mice. At all sites of MRI lesions we detected cellular infiltrates on corresponding histological sections. The discrepancy between the disease burden visualized by MRI and the extent of disability indeed mimics the human clinico-radiological paradox. MRI should therefore be implemented into evaluational in vivo routines of future therapeutic EAE studies.
BackgroundGadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI) is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel contrast medium in murine adoptive-transfer EAE.MethodsEAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR scanner. The enhancement pattern of the two contrast agents was compared, and correlated to histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining against IBA-1 to identify macrophages/microglia.ResultsBoth contrast media depicted BBB breakdown in 42 lesions, although differing in plaques appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely dispersed within the extracellular matrix.ConclusionVSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in inflammatory plaques that has not been visualized by conventional means.
Salivary DNA is encountered in many crimes, such as sexual assaults and murders. In this study, saliva from three male donors was deposited on the skin of three female recipients. The amount of male salivary DNA remaining on the female skin was measured over a 96-h period using the Quantifiler™ Y Human Male DNA Quantification Kit. In eight of the nine experiments, a full male DNA profile matching the donor was obtained even after 96 h. In addition, the study showed that the concentration of salivary DNA varied from donor to donor and from day to day. The efficiency of two recovery methods, wet and dry swabbing and minitaping, was compared. The results indicate the tapelift method gave higher DNA recovery. This study also examined the secondary transfer of salivary DNA from skin to fabrics. Cotton and polyester give higher DNA transfer than leather.
BackgroundPatients with recent stroke or TIA are at high risk for new vascular events. Several evidence based strategies in secondary prevention of stroke are available but frequently underused. Support programs with multifactorial risk factor modifications after stroke or TIA have not been investigated in large-scale prospective controlled trials so far. INSPiRE-TMS is a prospective, multi-center, randomized open intervention trial for intensified secondary prevention after minor stroke and TIA.Methods/designPatients with acute TIA or minor stroke admitted to the participating stroke centers are screened and recruited during in-hospital stay. Patients are randomised in a 1:1 ratio to intervention (support program) and control (usual care) arms. Inclusion of 2.082 patients is planned. The support program includes cardiovascular risk factor measurement and feedback, monitoring of medication adherence, coaching in lifestyle modifications, and active involvement of relatives. Standardized motivational interviewing is used to assess and enhance patients’ motivation. Primary objective is a reduction of new major vascular events defined as nonfatal stroke and myocardial infarction or vascular death. Recruitment time is planned for 3.5 years, follow up time is at least 2 years for every patient resulting in a total study time of 5 years (first patient in to last patient out).DiscussionGiven the high risk for vascular re-events in acute stroke and the available effective strategies in secondary prevention, the INSPIRE-TMS support program has the potential to lead to a relevant reduction of recurrent events and a prolongation of the event-free survival time. The trial will provide the basis for the decision whether an intensified secondary prevention program after stroke should be implemented into regular care. A cost-effectiveness evaluation will be performed.Trial registrationclinicaltrials.gov: 01586702
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.