ABSTRACT. In the classical probability, as well as in the fuzzy probability theory, random events and probability measures are modelled by functions into the closed unit interval [0,1]. Using elementary methods of category theory, we present a classification of the extensions of generalized probability measures (probability measures and integrals with respect to probability measures) from a suitable class of generalized random events to a larger class having some additional (algebraic and/or topological) properties. The classification puts into a perspective the classical and some recent constructions related to the extension of sequentially continuous functions.
ABSTRACT. We continue our study of the extensions of generalized probability measures. First, we describe some extensions of generalized random events (represented by classes of functions with values in [0,1]) to which generalized probability measures can be extended. Second, we study products of domains of probability and describe states on such products. Third, we show that the events in IF-probability, introduced by B. Riečan, form a suitable category isomorphic to a subcategory of the category of fuzzy random events. Consequently, IF-probability can be interpreted within fuzzy probability theory. We put forward some problems related to the extensions of probability domains and hint some applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.