Novel strategies to treat cancer effectively without adverse effects on the surrounding normal tissue are urgently needed. Marine sponges provide a natural and renewable source of promising anti-tumor agents. Here, we investigated the anti-tumor activity of Aerothionin and Homoaerothionin, two bromotyrosines isolated from the marine demosponge Aplysina cavernicola, on two mouse pheochromocytoma cells, MPC and MTT. To determine the therapeutic window of these metabolites, we furthermore explored their cytotoxicity on cells of the normal tissue. Both metabolites diminished the viability of the pheochromocytoma cell lines significantly from a concentration of 25 µM under normoxic and hypoxic conditions. Treatment of MPC cells leads moreover to a reduction in the number of proliferating cells. To confirm the anti-tumor activity of these bromotyrosines, 3D-pheochromocytoma cell spheroids were treated with 10 µM of either Aerothionin or Homoaerothionin, resulting in a significant reduction or even complete inhibition of the spheroid growth. Both metabolites reduced viability of normal endothelial cells to a comparable extent at higher micromolar concentration, while the viability of fibroblasts was increased. Our in vitro results show promise for the application of Aerothionin and Homoaerothionin as anti-tumor agents against pheochromocytomas and suggest acceptable toxicity on normal tissue cells.
Aggressive pheochromocytomas and paragangliomas (PPGLs) are difficult to treat, and molecular targeting is being increasingly considered, but with variable results. This study investigates established and novel molecular-targeted drugs and chemotherapeutic agents for the treatment of PPGLs in human primary cultures and murine cell line spheroids. In PPGLs from 33 patients, including 7 metastatic PPGLs, we identified germline or somatic driver-mutations in 79% of cases, allowing us to assess potential differences in drug responsivity between pseudohypoxia-associated cluster 1- (n=10) and kinase signaling-associated cluster 2-related (n=14) PPGL primary cultures. Single anti-cancer drugs were either more effective in cluster 1 (cabozantinib, selpercatinib, 5-FU) or similarly effective in both clusters (everolimus, sunitinib, alpelisib, trametinib, niraparib, entinostat, gemcitabine, AR-A014418, high-dose zoledronic acid). High-dose estrogen and low-dose zoledronic acid were the only single substances more effective in cluster 2. Neither cluster 1- nor cluster 2-related patient primary cultures responded to HIF-2α inhibitors, temozolomide, dabrafenib, or octreotide. We showed particular efficacy of targeted combination treatments (cabozantinib/everolimus, alpelisib/everolimus, alpelisib/trametinib) in both clusters, with higher efficacy of some targeted combinations in cluster 2 and overall synergistic effects (cabozantinib/everolimus, alpelisib/trametinib) or synergistic effects in cluster 2 (alpelisib/everolimus). Cabozantinib/everolimus combination therapy, gemcitabine, and high-dose zoledronic acid appear to be promising treatment options with particularly high efficacy in SDHB-mutant and metastatic tumors. In conclusion, only minor differences regarding drug responsivity were found between cluster 1 and cluster 2: some single anti-cancer drugs were more effective in cluster 1 and some targeted combination treatments were more effective in cluster 2.
Continuous activation of hypoxia pathways in pheochromocytomas and paragangliomas (PPGLs) is associated with higher disease aggressiveness, for which effective treatment strategies are still missing. Most of the commonly used in vitro models lack characteristics of these pseudohypoxic tumors, including elevated expression of hypoxia-inducible factor (HIF) 2α. To address this shortcoming, we investigated whether recurrent hypoxia cycles lead to continuous activation of hypoxia pathways under normoxic conditions and whether this pseudohypoxia is associated with increased cellular aggressiveness. Rat pheochromocytoma cells (PC12) were incubated under hypoxia for 24 h every 3–4 days, up to 20 hypoxia–reoxygenation cycles, resulting in PC12 Z20 cells. PC12 Z20 control cells were obtained by synchronous cultivation under normoxia. RNA sequencing revealed upregulation of HIF2α in PC12 Z20 cells and a pseudohypoxic gene signature that overlapped with the gene signature of pseudohypoxic PPGLs. PC12 Z20 cells showed a higher growth rate, and the migration and adhesion capacity were significantly increased compared with control cells. Changes in global methylation, together with the pseudohypoxic conditions, may be responsible for the increased aggressiveness of this new model. The established sub-cell line with characteristics of pseudohypoxic PPGLs represent a complementary model for further investigations, for example, with regard to new therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.