The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Poly(ethylene glycol) (PEG) is a widely used biocompatible polymer. We describe a novel epoxide monomer with methyl-thioether moiety, 2-(methylthio)ethyl glycidyl ether (MTEGE), which enables the synthesis of well-defined thioether-functional poly(ethylene glycol). Random and block mPEG-b-PMTEGE copolymers (Mw/Mn = 1.05-1.17) were obtained via anionic ring opening polymerization (AROP) with molecular weights ranging from 5 600 to 12 000 g·mol(-1). The statistical copolymerization of MTEGE with ethylene oxide results in a random microstructure (rEO = 0.92 ± 0.02 and rMTEG E = 1.06 ± 0.02), which was confirmed by in situ (1)H NMR kinetic studies. The random copolymers are thermoresponsive in aqueous solution, with a wide range of tunable transition temperatures of 88 to 28 °C. In contrast, mPEG-b-PMTEGE block copolymers formed well-defined micelles (Rh ≈ 9-15 nm) in water, studied by detailed light scattering (DLS and SLS). Intriguingly, the thioether moieties of MTEGE can be selectively oxidized into sulfoxide units, leading to full disassembly of the micelles, as confirmed by detection of pure unimers (DLS and SLS). Oxidation-responsive release of encapsulated Nile Red demonstrates the potential of these micelles as redox-responsive nanocarriers. MTT assays showed only minor effects of the thioethers and their oxidized derivatives on the cellular metabolism of WEHI-164 and HEK-293T cell lines (1-1000 μg·mL(-1)). Further, sulfonium PEG polyelectrolytes can be obtained via alkylation or alkoxylation of MTEGE, providing access to a large variety of functional groups at the charged sulfur atom.
Polyamic acid (PAA) salts are amenable to photocuring additive manufacturing processes of all-aromatic polyimides. Due to an all-aromatic structure, these high-performance polymers are exceptionally chemically and thermally stable but are not conventionally processable in their imidized form. The facile addition of 2-(dimethylamino)ethyl methacrylate (DMAEMA) to commercially available poly(4,4′-oxydiphenylene pyromellitamic acid) (PMDA-ODA PAA) afforded ultraviolet curable PAA salt solutions. These readily prepared solutions do not require multistep synthesis, exhibited fast gel times (<5 s), and rendered high G′ gel-state moduli. Vat photopolymerization 3D printing afforded self-supporting organogels. Subsequent thermal treatment rendered the cross-linked PAA precursor to all-aromatic PMDA-ODA polyimide. This fast and facile strategy makes PMDA-ODA polyimides accessible in three dimensions and offers impact on aerospace or automotive technologies.
Amine-functional poly(ethylene glycol) (PEG) copolymers have been prepared that exhibit thermo- and pH- responsive behavior in aqueous solution. Three novel tertiary di(n-alkyl)glycidylamine monomers have been introduced for anionic ring-opening copolymerization (AROcP) with ethylene oxide (EO): N,N-di(n-butyl)glycidylamine (DButGA), N,N-di(n-hexyl)glycidylamine (DHexGA), and N,N-di(n-octyl)glycidylamine (DOctGA). Via controlled AROcP we synthesized well-defined (M w/M n = 1.05–1.14), water-soluble block- and gradient-type PEG copolymers, containing up to 25 mol % of the respective dialkylglycidylamine comonomer. Molecular weights ranged from 4900 to 12 000 g mol–1. Detailed in-situ 1H NMR kinetics and 13C triad analyses elucidate the microstructures of the copolymers and the relative reactivity of the novel comonomers. Notably, the n-alkyl chain length had no significant influence on the relative reactivity of the glycidylamine comonomers. Calculated reactivity ratios ranged from r EO = 1.84, r DButGA = 0.49 to r EO = 1.78, r DOctGA = 0.42, manifesting the formation of gradient copolymers. Thermo- and pH-responsive properties of these copolymers are precisely tunable by the comonomer ratio, and cloud points in aqueous solution can be adjusted between 21 and 93 °C. Electron paramagnetic resonance (EPR) spectroscopic studies with TEMPO as a spin probe were conducted to elucidate host–guest interactions of the copolymers. Unexpectedly, the n-alkyl chain length of the different glycidylamine comonomers only influences the inverse phase transition of the gradient copolymers, but not of the block copolymers on the nanoscale. Self-assembly of the block- and gradient-type copolymers in aqueous alkaline solution by both static and dynamic light scattering has also been investigated after confirming the existence of pure unimers in methanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.